Analysis and design of analog integrated circuits

Tags: Offset Voltage, Integrated-Circuit Fabrication, Approximate Analysis, Differential Amplifiers, Bipolar Transistors, University of California, Transconductance, University of California, Berkeley, MOS Transistors, Feedback Circuits, Depletion Region, Bipolar Transistor, Common-Mode Feedback, Equivalent Input Noise, MOS Transistor, Phase-Locked Loops, Noise Performance, Return Ratio, Forward-Active Region, Output Resistance, Emitter Follower, Emitter Degeneration, Current Mirror, Integrated Circuits, MOS Technology, Frequency Response, Operational Amplifiers, Operational-Amplifier Equivalent Circuit, Equivalent Circuit, Feedback Circuit, Amplifier Frequency Response, Feedback Amplifiers, Differential Amplifier
Content: Analysis and Design OF ANALOG Integrated Circuits Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J . HURST University of California, Davis STEPHEN H. LEWIS University of California, Davis ROBERT G. MEYER University of California, Berkeley John Wiley & Sons, Inc. New York / Chichester / Weinheim /Brisbane / Singapore / Toronto
Contents
CHAPTER 1 Models for Integrated-Circuit Active Devices 1 1 .1 Introduction 1 1 .2 Depletion Region of a pn Junction 1 1.2.1 Depletion-Region Capacitance 5 1.2.2 Junction Breakdown 6 1.3 Large-Signal Behavior of Bipolar Transistors 8 1.3.1 Large-Signal Models in the Forward-Active Region 9 1 .3.2 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region 14 1.3 .3 Saturation and Inverse Active Regions 16 1 .3.4 Transistor Breakdown Voltages 20 1 .3.5 Dependence of Transistor Current Gain RF on Operating Conditions 23 1.4 Small-Signal Models of Bipolar Transistors 26 1 .4.1 Transconductance 27 1 .4.2 Base-Charging Capacitance 28 1.4.3 Input Resistance 29 1.4.4 Output Resistance 29 1 .4.5 Basic Small-Signal Model of the Bipolar Transistor 30 1 .4.6 Collector-Base Resistance 30 1 .4.7 Parasitic Elements in the Small-Signal Model 31 1.4.8 Specification of Transistor frequency response 34 1.5 Large Signal Behavior of Metal-Oxide-Semiconductor Field-Effect Transistors 38 1 .5.1 Transfer Characteristics of MOS Devices 38
1.5.2 1 .5.3 1 .5.4 1.5.5
Comparison of Operating Regions of Bipolar and MOS Transistors 45 Decomposition of Gate-Source Voltage 47 Threshold Temperature Dependence 47 MOS Device Voltage Limitations 48
1 .6 Small-Signal Models of the MOS Transistors 49 1 .6.1 Transconductance 50 1 .6.2 Intrinsic Gate-Source and Gate-Drain Capacitance 51
1.6.3 Input Resistance 52
1.6.4 Output Resistance 52 1 .6.5 Basic Small-Signal Model of the MOS Transistor 52
1 .6.6 Body Transconductance 53 1.6.7 Parasitic Elements in the Small-Signal Model 54 1.6.8 MOS Transistor Frequency Response 55
1 .7 Short-Channel Effects in MOS Transistors 58
1.7 .1 1.7.2
Velocity Saturation from the Horizontal Field 59 Transconductance and Transition Frequency 63
1 .7.3 Mobility Degradation from the Vertical Field 65
1 .8 Weak Inversion in MOS Transistors 65
1 .8.1 Drain Current in Weak Inversion 66 1 .8.2 Transconductance and Transition Frequency in Weak Inversion 68 1.9 Substrate Current Flow in MOS Transistors 71 A.1 .1 Summary of Active-Device Parameters 73
CHAPTER 2 Bipolar, MOS, and BiCMOS Integrated-Circuit Technology 78
2.1 Introduction 78 2.2 Basic Processes in Integrated-Circuit Fabrication 79
2.2.1 Electrical Resistivity of Silicon 79
2.2.2 Solid-State Diffusion 80 2.2.3 Electrical Properties of Diffused Layers 82
2.2.4 Photolithography 84
2.2.5 Epitaxial Growth 85
2.2.6 Ion Implantation 87
2.2.7 Local Oxidation 87
2.2.8 Polysi1icon Deposition 87
2.3 High-Voltage Bipolar Integrated-Circuit Fabrication 88
2.4 Advanced Bipolar Integrated-Circuit Fabrication 92
2.5 Active Devices in Bipolar Analog Integrated Circuits 95
2.5.1 2.5.2
Integrated-Circuit npn Transistor 96 Integrated-Circuit pnp Transistors 107
2.6 Passive Components in Bipolar Integrated Circuits 115
2.6.1 Diffused Resistors 115 2.6.2 Epitaxial and Epitaxial Pinch Resistors 119
2.6.3 Integrated-Circuit Capacitors 120
2.6.4 Zener Diodes 121
2.6.5 Junction Diodes 122 2.7 Modifications to the Basic Bipolar Process 123
2.7.1 Dielectric Isolation 123 2.7.2 Compatible Processing for High-Performance Active Devices 124 2.7.3 High-Performance Passive Components 127
2.8 MOS Integrated-Circuit Fabrication 127
2.9 Active Devices in MOS Integrated Circuits 131
Contents xi 2.9.1 n-Channel Transistors 131 2.9.2 p-Channel Transistors 141 2.9.3 Depletion Devices 142 2.9.4 Bipolar Transistors 142 2.10 Passive Components in MOS Technology 144 2.10 .1 Resistors 144 2.10 .2 Capacitors in MOS Technology 145 2.10 .3 Latchup in CMOS Technology 148 2.11 BiCMOS Technology 150 2.12 Heterojunction Bipolar Transistors 152 2.13 Interconnect Delay 153 2.14 Economics of Integrated-Circuit Fabrication 154 2.14.1 Yield Considerations in Integrated-Circuit Fabrication 154 2.14.2 Cost Considerations in Integrated-Circuit Fabrication 157 2.15 Packaging Considerations for Integrated Circuits 159 2.15.1 Maximum Power Dissipation 159 2.15.2 Reliability Considerations in Integrated-Circuit Packaging 162 A.2.1 SPICE Model-Parameter Files 163 CHAPTER 3 Single-Transistor and Multiple-Transistor Amplifiers 170 3.1 Device Model Selection for Approximate analysis of analog circuits 171 3.2 Two-Port Modeling of Amplifiers 172 3.3 Basic Single-Transistor Amplifier Stages 174 3 .3.1 Common-Emitter Configuration 175 3 .3.2 Common-Source Configuration 179 3 .3.3 Common-Base Configuration 183 3 .3.4 Common-Gate Configuration 186
xii Contents
3.3 .5 Common-Base and Common-Gate 1C8 onfigurations wit8 h Finite ro
3.3.6 3 .3.7 3 .3.8
3.3.5.1 Common-Base and Common-Gate Input Resistance 188 3.3.5 .2 Common-Base and Common-Gate Output Resistance 190 Common-Collector Configuration (Emitter Follower) 191 Common-Drain Configuration (Source Follower) 195 Common-Emitter Amplifier with Emitter Degeneration 197
3.3.9 Common-Source Amplifier with Source Degeneration 200
3.4 Multiple-Transistor Amplifier Stages 202
3.5 .6.5 Input Offset Current of the Emitter-Coupled Pair 235 3.5.6.6 Input Offset Voltage of the Source-Coupled Pair 236 3.5.6.7 Offset Voltage of the Source-Coupled Pair: Approximate Analysis 236 3 .5.6.8 Offset Voltage Drift in the Source-Coupled Pair 238 3.5.6.9 Small-Signal Characteristics of Unbalanced Differential Amplifiers 238 A.3.1 elementary statistics and the Gaussian distribution 246
3.4.1 The CC-CE, CC-CC, and Darlington Configurations 202
CHAPTER 4 Current Mirrors, Active Loads, and References 253
3.4.2 The Cascode Configuration 206
4.1 Introduction 253
3.4.2.1 3.4.2.2
The The
Bipolar Cascode MOS Cascode
206 4.2 Current 2081
Mirrors
253
3.4.3 The Active Cascode 211
4.2.enG eral ropPerties 253
3.4.4 The Super Source Follower 213
4,2,2 Simple Current Mirror 255
3.5 Differential Pairs 215
4.2.2.1 Bipolar 255
3.5.1 The do Transfer Characteristic of an Emitter-Coupled Pair 215
4.2.2.2 MOS 257 4.2.3 Simple Current Mirror with Beta Helper 260
3.5.2 The do Transfer Characteristic with Emitter Degeneration 217
4.2.3.1 Bipolar 260
3 .5.3 The do Transfer Characteristic of a Source-Coupled Pair 218 3 .5.4 Introduction to the Small-Signal
4.2.3.2 MOS 262 4.2.4 Simple Current Mirror with Degeneration 262
Analysis of Differential Amplifiers
4.2.4.1 Bipolar 262
221 3 .5.5 Small-Signal Characteristics of Balanced Differential Amplifiers
4.2.4.2 MOS 263 4.2.5 Cascode Current Mirror 263
224 3.5 .6 Device Mismatch Effects in Differential Amplifiers 231 3.5.6.1 Input Offset Voltage and
4.2.5.1 Bipolar 263 4.2.52. MOS 266 4.2.6 Wilson Current Mirror 274
Current 231 3.5.6.2 Input Offset Voltage of the Emitter-Coupled Pair 232
4.2.6.1 Bipolar 274 4.2.6.2 MOS 277 4,3 Active Loads 278
3.5.6.3 Offset Voltage of the Emitter-Coupled Pair: Approximate Analysis 232 3 .5.6.4 Offset Voltage Drift in the Emitter-Coupled Pair 234
4.3 .1 4.3 .2 4.3 .3
Motivation 278 Common-Emitter/Common-Source Amplifier with Complementary Load 279 Common-Emitter/Common-Source Amplifier with Depletion Load 282
Contents xiii
4.3.4 Common-Emitter/Common-Source 5 .2 The Emitter Follower As an Output
Amplifier with Diode-Connected
Stage 344
Load 284
4.3.5 Differential Pair with
5.2.1 Transfer Characteristics of the
Current-Mirror Load 287
Emitter-Follower 344
4.3.5 .1 Large-Signal Analysis 287 4.3.5.2 Small-Signal Analysis 288 4.3.5.3 Common-Mode Rejection Ratio 293
5.2.2 5.2.3 5.2.4
power output and Efficiency 347 Emitter-Follower Drive Requirements 354 Small-Signal Properties of the Emitter Follower 355
4.4 Voltage and Current References 299
5.3 The Source Follower As an Output Stage 356
4.4.1 Low-Current Biasing 299 4.4.1.1 Bipolar Widlar Current Source 299 4.4.1.2 MOS Widlar Current Source 302
5 .3.1 Transfer Characteristics of the Source Follower 356 5.3.2 Distortion in the Source Follower 358
4.4.1.3 Bipolar Peaking Current Source 303 4.4.1.4 MOS Peaking Current Source 304
4.4.2
Supply-Insensitive Biasing 306 4.4.2.1 Widlar Current Sources 306 4.4.2.2 Current Sources Using Other Voltage Standards 307
5 .4 Class B Push-Pull Output Stage 362
5.4.1 5.4.2 5.4.3 5.4.4
Transfer Characteristic of the Class B Stage 363 Power Output and Efficiency of the Class B Stage 365 Practical Realizations of Class B Complementary Output Stages 369 All-npn Class B Output Stage 376
4.4.2.3 Self Biasing 309
5.4.5 Quasi-Complementary Output
4.4.3 Temperature-Insensitive Biasing
Stages 379
317 4.4.3.1 Band-Gap-Referenced
5.4.6 Overload Protection 380
Bias Circuits in Bipolar
5.5 CMOS Class AB Output Stages 382
Technology 317 4.4.3.2 Band-Gap-Referenced Bias Circuits in CMOS Technology 323
5.5.1 Common-Drain Configuration 383 5.5 .2 Common-Source Configuration with Error Amplifiers 384
A.4.1 Matching Considerations in Current Mirrors 327 A.4.1.1 Bipolar 327 A.4.1.2 MOS 329 A.4.2 Input Offset Voltage of Differential Pair with Active Load 332 A.4.2.1 Bipolar 332 A.4.2.2 MOS 334
5.5.3 Alternative Configurations 391 5.5.3.1 Combined Common-Drain Common-Source Configuration 391 5.5.3.2 Combined Common-Drain Common-Source Configuration with High Swing 393 5.5.3 .3 Parallel Common-Source Configuration 394
CHAPTER 5 Output Stages 344 5.1 Introduction 344
CHAPTER 6 Operational Amplifiers with Single-Ended Outputs 404 6.1 Applications of Operational Amplifiers 405
xiv Contents
6.1 .1 Basic Feedback Concepts 405
6.6 MOS Folded-Cascode Operational
6.1 .2 Inverting Amplifier 406
Amplifiers 446
6.13. Noninvertin 5 Amplifier 408
6.7 MOS Active-Cascode Operational Amplifiers 450
6.1 .4 Differential Amplifier 408
6.8 Bipolar Operational Amplifiers 453
6.1 .5 Nonlinear Analog Operations 409
6.8.1 The do Analysis of the 741
6.1 .6 Integrator, Differentiator 410
Operational Amplifier 456
6.1 .7 Internal Amplifiers 411
6.8.2 Small-Signal Analysis of the 741
6.1.7.1 Switched-Capacitor
Operational Amplifier 461
Amplifier 411
6.8.3 Input Offset Voltage, Input
6.1 .7.2 Switched-Capacitor
Offset Current, and
Integrator 416
Common-Mode Rejection Ratio
6.2
Deviations from Ideality in Real Operational Amplifiers 419
6.9
of the 741 470 Design Considerations for Bipolar
6.2.1 Input bias current 419
MlointohicpOertaionlaAmlpiefirs 472
6.2.2 Input Offset Current 420 6.2.3 Input Offset Voltage 421
6.9.1 Design of Low-Drift Operational Amplifiers 474
6.2.4 Common-Mode Input Range 421 6.2.5 Common-Mode Rejection Ratio (CMRR) 421 6.2.6 Power-Supply Rejection Ratio (PSRR) 422 6.2.7 Input Resistance 424
6.9.2 Design of Low-Input-Current Operational Amplifiers 476 CHAPTER 7 Frequency Response of Integrated Circuits 488
6.2.8 Output Resistance 424 6.2.9 Frequency Response 424 6.2.10 Operational-Amplifier Equivalent Circuit 424 6.3 Basic Two-Stage MOS Operational Amplifiers 425 6.3.1 Input Resistance, Output Resistance, and Open-Circuit Voltage Gain 426 6.3.2 Output Swing 428 6.3.3 Input Offset Voltage 428 6.3 .4 Common-Mode Rejection Ratio 431 6.3 .5 Common-Mode Input Range 432 6.3.6 Power-Supply Rejection Ratio (PSRR) 434 6.3.7 Effect of Overdrive Voltages 439 6.3.8 Layout Considerations 439 6.4 Two-Stage MOS Operational Amplifiers with Cascodes 442 6.5 MOS Telescopic-Cascode Operational Amplifiers 444
7 .1 Introduction 488
7 .2 Single-Stage Amplifiers 488
7.2.1 7.2.2 7.2.3 7.2.4
Single-Stage Voltage Amplifiers and The Miller Effect 488 7.2.1 .1 The Bipolar Differential Amplifier: DifferentialMode Gain 493 7.2.1 .2 The MOS Differential Amplifier : DifferentialMode Gain 496 Frequency Response of the Common-Mode Gain for a Differential Amplifier 499 Frequency Response of Voltage Buffers 502 7.2.3.1 Frequency Response of the Emitter Follower 503 7.2.3.2 Frequency Response of the Source Follower 509 Frequency Response of Current Buffers 511 7.2.4.1 Common-Base-Amplifier Frequency Response 514 7.2.4.2 Common-Gate-Amplifier Frequency Response 515
Contents xv
7 .3 Multistage Amplifier Frequency Response 516 7.3 .1 Dominant-Pole Approximation 516 7.3 .2 Zero-Value Time Constant Analysis 517
8.6.2 Local Shunt Feedback 591 8 .7 The Voltage Regulator as a Feedback Circuit 593 8.8 Feedback Circuit Analysis Using Return Ratio 599
7.3 .3 Cascode Voltage-Amplifier Frequency Response 522
8 .8.1 Closed-Loop Gain Using Return Ratio 601
7.3 .4 Cascode Frequency Response
8 .8.2 Closed-Loop Impedance Formula
525
Using Return Ratio 607
7.3 .5 Frequency Response of a Current
8.8.3 Summary-Return-Ratio Analysis
Mirror Loading a Differential Pair
612
532
8.9 Modeling input and output Ports in
7.3.6 Short-Circuit Time Constants 533
Feedback Circuits 613
7.4 Analysis of the Frequency Response of
the 741 Op Amp 537
7.4.1 7.4.2
High-Frequency Equivalent Circuit of the 741 537 Calculation of the -3-dB Frequency of the 741 538
CHAPTER 9 Frequency Response and Stability of Feedback Amplifiers 624 9 .1 Introduction 624
7.4.3 Nondominant Poles of the 741 540
9.2 Relation Between Gain and Bandwidth in Feedback Amplifiers
7.5 Relation Between Frequency
624
Response and Time Response 542
9.3 Instability and the Nyquist Criterion
626
CHAPTER 8 Feedback 553 8.1 Ideal Feedback Equation 553 8.2 Gain Sensitivity 555 8.3 Effect of negative feedback on Distortion 555 8.4 Feedback Configurations 557 8.4.1 Series-Shunt Feedback 557 8.4.2 Shunt-Shunt Feedback 560
9.4 Compensation 633
9.4.1 Theory of Compensation 633
9.4.2 9.4.3 9.4.4
Methods of Compensation 637 Two-Stage MOS Amplifier Compensation 644 Compensation of Single-Stage CMOS OP Amps 652
9.4.5 Nested Miller Compensation 656
9.5 Root-Locus Techniques 664
8.4.3 Shunt-Series Feedback 561
9.5.1 Root Locus for a Three-Pole
8.4.4 Series-Series Feedback 562 8.5 Practical Configurations and the Effect of Loading 563
transfer function 664 9.5.2 Rules for Root-Locus Construction 667 9.5.3 Root Locus for Dominant-Pole
8.5.1 Shunt-Shunt Feedback 563
Compensation 675
8.5.2 Series-Series Feedback 569 8.5.3 Series-Shunt Feedback 579 8.5.4 Shunt-Series Feedback 583 8.5.5 Summary 587 8.6 Single-Stage Feedback 587
9.5.4 Root Locus for Feedback-Zero Compensation 676 9.6 Slew Rate 680 9.6.1 Origin of Slew-rate limitations 680 9.6.2 Methods of Improving Slew-Rate
8.6.1 Local Series Feedback 587
684
xvi Contents 9.6.3 Improving Slew-Rate in Bipolar Op Amps 685 9.6.4 Improving Slew-Rate in MOS Op Amps 686 9.6.5 Effect of Slew-Rate Limitations on Large-Signal Sinusoidal Performance 690 A .9 .1 Analysis in Terms of Return-Ratio Parameters 691 A .9 .2 Roots of a quadratic equation 692 Chapter 10 Nonlinear Analog Circuits 702 10.1 Introduction 702 10.2 Precision Rectification 702 10.3 Analog Multipliers Employing the Bipolar Transistor 708 10.3.1 The Emitter-Coupled Pair as a Simple Multiplier 708 10.3.2 The do Analysis of the Gilbert Multiplier Cell 710 10.3.3 The Gilbert Cell as an Analog Multiplier 712 10.3.4 A Complete Analog Multiplier 715 10.3.5 The Gilbert Multiplier Cell as a Balanced Modulator and Phase Dectector 716 10.4 Phase-Locked Loops (PLL) 720 10.4.1 Phase-Locked Loop Concepts 720 10.4.2 The Phase-Locked Loop in the Locked Condition 722 10.4.3 Integrated-Circuit Phase-Locked Loops 731 10.4.4 Analysis of the 560B Monolithic Phase-Locked Loop 735 10.5 Nonlinear function Symbols 743 CHAPTER 11 Noise in Integrated Circuits 748 11 .1 Introduction 748 11 .2 Sources of Noise 748
11 .2.1 Shot Noise 748 11 .2.2 Thermal Noise 752 11 .2.3 Flicker Noise (11f Noise) 753 11 .2.4 Burst Noise (Popcorn Noise) 754 11 .2.5 Avalanche Noise 755 11 .3 Noise Models of Integrated-Circuit Components 756 11.3.1 Junction Diode 756 11.3 .2 Bipolar Transistor 757 11.3 .3 MOS Transistor 758 11.3.4 Resistors 759 11.3.5 Capacitors and Inductors 759 11 .4 Circuit Noise Calculations 760 11 .4.1 Bipolar Transistor Noise Performance 762 11 .4.2 Equivalent Input Noise and the Minimum Detectable Signal 766 11 .5 Equivalent Input Noise Generators 768 11 .5.1 Bipolar Transistor Noise Generators 768 11 .5.2 MOS Transistor Noise Generators 773 11 .6 Effect of Feedback on Noise Performance 776 11.6.1 Effect of Ideal Feedback on Noise Performance 776 11.6.2 Effect of Practical Feedback on Noise Performance 776 11 .7 Noise Performance of Other Transistor Configurations 783 11.7.1 Common-Base Stage Noise Performance 783 11.7.2 Emitter-Follower Noise Performance 784 11.7.3 Differential-Pair Noise Performance 785 11 .8 Noise in Operational Amplifiers 788 11 .9 Noise Bandwidth 794 11 .10 Noise Figure and Noise Temperature 799 11 .10 .1 Noise Figure 799 11 .10 .2 Noise Temperature 802
Chapter 12 Fully Differential Operational Amplifiers 808 12.1 Introduction 808 12.2 Properties of Fully Differential Amplifiers 808 12.3 Small-Signal Models for Balanced Differential Amplifiers 811 12.4 Common-Mode Feedback 816 12.4.1 Common-Mode Feedback at Low Frequencies 817 12.4.2 Stability and Compensation Considerations in a CMFB Loop 822 12.5 CMFB Circuits 823 12.5.1 CMFB Using Resistive Divider and Amplifier 824 12.5.2 CMFB Using Two Differential Pairs 828
Contents xvii 12.5.3 CMFB Using Transistors in the Triode Region 830 12.5.4 Switched-Capacitor CMFB 832 12.6 Fully Differential Op Amps 835 12.6.1 A Fully Differential Two-Stage Op Amp 835 12.6.2 Fully Differential Telescopic Cascode Op Amp 845 12.6.3 Fully Differential Folded-Cascode Op Amp 846 12.6.4 A Differential Op Amp with Two Differential Input Stages 847 12.6.5 Neutralization 849 12.7 Unbalanced Fully Differential Circuits 850 12.8 Bandwidth of the CMFB Loop 856 Index 865

File: analysis-and-design-of-analog-integrated-circuits.pdf
Published: Tue Nov 8 08:30:46 2005
Pages: 9
File size: 0.53 Mb


Becoming a teacher, 17 pages, 0.05 Mb

Comparative Sapphism, 35 pages, 0.85 Mb
Copyright © 2018 doc.uments.com