Digital communications

Tags: Digital Communications, Digital and Analog Communication Systems, Geometric Representation, Intersymbol Interference, Final Examination, research paper, examination, Pulse Code Modulation, Digital Modulation, Leon W. Couch, Time Division Multiplexing, H.W., First examination, Intellectual Skills, support material, Prentice-Hill International, research projects, Digital modulation techniques, Philadelphia University Faculty of Engineering Department of Communications & Electronics, paraphrasing, quotations, Avoiding Plagiarism, quotation marks, Course Syllabus, Transferable Skills, Bibliography, Assessment Instruments, digital communications systems, Course module, D4 D5 Assessment instruments
Content: Philadelphia University Faculty of Engineering Department of Communications & Electronics First semester, 2009/2010
Course Title: Digital Communications Course Level: 5th Lecture Time: 9:10-10:10
course syllabus Course code: 650533 Course prerequisite (s) and/or corequisite (s): Analog Communications Credit Hours: 3
Name Dr. Saleh Saraireh
Rank
Academic Staff Specifics Office Number and Location
Assistant 811 Prof.
Office Hours 10:10-11:10 S,T,&T
E-mail Address [email protected]
Course module description: This course covers the following topics: Pulse code modulation, TDM Differential PCM. Match Filter. Intersymbol interference (ISI). Baseband M-ary PAM transmission. Geometric representation of signals. Correlation Receiver. Digital modulation techniques (ASK, FSK, PSK, DPSK, and M-ary). Effect of noise on digital modulation signals. Course module objectives: The main objectives of this course are: - To understand the basics of modulation concepts. - To understand the basics of signal-space analysis. - To understand the concepts of digital transmission.
Course/ module components · Books (title , author (s), publisher, year of publication) Title: Digital Communications. Author : Simon Haykin. Publisher : John Wiley & Sons, Inc. 4th Edition,2001.
teaching methods: Lectures, tutorials, problem solving, etc. Lectures, discussion in class, tutorials,and problem solving. Duration: 16 weeks, 48 hours in total. Lectures: 48 hours, 3 per week + two exams (two hours). Learning Outcomes: · knowledge and understanding 1) Develop the ability of the student to understand the digital modulation techniques. 2) Develop the skills of the students in digital communications systems. · Cognitive skills (thinking and analysis) Students should be able to: Provide a good background in digital communications systems. · communication skills (personal and academic) 1) Ability to work as a team work. 2) Ability to solve problems. · Practical and subject specific skills (Transferable Skills) Use appropriate mathematical skills to 1) Illustrate the modulation techniques. 2) Illustrate the signal-space analysis.
Course Intended Learning Outcomes
A - Knowledge and Understanding
A1.
A2.
A3.
A4
A5
B - Intellectual Skills
B1.
B2.
B3
B4
B5
C - Practical Skills
C1.
C2
C3
C4
C5
D - Transferable Skills
D1.
D2.
D3.
D4
D5
Assessment instruments Allocation of Marks Assessment Instruments First examination Second examination Final Examination: 50 marks Reports, research projects, Quizzes, Home works, Projects Total
Mark 20% 20% 50% 10% 100%
* Make-up exams will be offered for valid reasons only with consent of the Dean. Make-up exams may be different from regular exams in content Documentation and Academic Honesty Submit your home work covered with a sheet containing your name, number, course title and number, and type and number of the home work (e.g. tutorial, assignment, and project). Any completed homework must be handed in to my office (room 821) by 13:00 on the due date. After the deadline "zero" will be awarded. You must keep a duplicate copy of your work because it may be needed while the original is being marked. You should hand in with your assignments: 1- A printed listing of your test programs (if any). 2- A brief report to explain your findings. 3- Your solution of questions. For the Research Report, you are required to write a report similar to a research paper. It should include: o Abstract: It describes the main synopsis of your paper. o Introduction: It provides background information necessary to understand the research and getting readers interested in your subject. The introduction is where you put your problem in context and is likely where the bulk of your sources will appear. o Methods (Algorithms and Implementation): Describe your methods here. Summarize the algorithms generally, highlight features relevant to your project, and refer readers to your references for further details. o Results and Discussion (Benchmarking and Analysis): This section is the most important part of your paper. It is here that you demonstrate the work you have accomplished on this project and explain its significance. The quality of your analysis will impact your final grade more than any other component on the paper. You should therefore plan to spend the bulk of your project time not just gathering data, but determining what it ultimately means and deciding how best to showcase these findings. o Conclusion: The conclusion should give your reader the points to "take home" from your paper. It should state clearly what your results demonstrate about the problem you were tackling in the paper. It should also generalize your findings, putting them into a useful context that can be built upon. All generalizations should be supported by your data, however; the discussion should prove these
points, so that when the reader gets to the conclusion, the statements are logical and seem self-evident. o Bibliography: Refer to any reference that you used in your assignment. Citations in the body of the paper should refer to a bibliography at the end of the paper. · Protection by Copyright 1. Coursework, laboratory exercises, reports, and essays submitted for assessment must be your own work, unless in the case of group projects a joint effort is expected and is indicated as such. 2. Use of quotations or data from the work of others is entirely acceptable, and is often very valuable provided that the source of the quotation or data is given. Failure to provide a source or put quotation marks around material that is taken from elsewhere gives the appearance that the comments are ostensibly your own. When quoting word-for-word from the work of another person quotation marks or indenting (setting the quotation in from the margin) must be used and the source of the quoted material must be acknowledged. 3. Sources of quotations used should be listed in full in a bibliography at the end of your piece of work. · Avoiding Plagiarism. 1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody else's work, is called plagiarism and is a serious offence, equated with cheating in examinations. This applies to copying both from other students' work and from published sources such as books, reports or journal articles. 2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism. A close paraphrase of another person's work must have an acknowledgement to the source. It is not acceptable for you to put together unacknowledged passages from the same or from different sources linking these together with a few words or sentences of your own and changing a few words from the original text: this is regarded as over-dependence on other sources, which is a form of plagiarism. 3. Direct quotations from an earlier piece of your own work, if not attributed, suggest that your work is original, when in fact it is not. The direct copying of one's own writings qualifies as plagiarism if the fact that the work has been or is to be presented elsewhere is not acknowledged. 4. Plagiarism is a serious offence and will always result in imposition of a penalty. In deciding upon the penalty the Department will take into account factors such as the year of study, the extent and proportion of the work that has been plagiarized, and the apparent intent of the student. The penalties that can be imposed range from a minimum of a zero mark for the work (without allowing resubmission) through caution to disciplinary measures (such as suspension or expulsion).
Course/ academic calendar
week (1) (2) (3) (4) (5) (6) First examination (7) (8) (9) (10)
Basic and support
material to be
covered
Introduction
Pulse
Code
Modulation
Time
Division
Multiplexing,
DPCM
Match Filter
Intersymbol
Interference (ISI)
Baseband M-ary
PAM Transmission
Signal-Space
analysis
Geometric
Representation of
Signals
Likelihood
Functions
Coherent Receiver
Homework/reports and their due dates H.W. 1 H.W.2 H.W.3
(11)
Probability of Error
(12) Second examination (13) (14) (15) (16) Final Examination
Digital Modulation Techniques (ASK) (FSK) PSK and DPSK Effect of Noise on Digital Modulation Signals
H.W.4
Expected workload: On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.
Attendance policy: Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.
Module references Books 1. Bernard Sklar." Digital Communications Fundamentals and Applications ", 2nd Edition 2001, Prentice-Hill International, INC. 2. Leon W. Couch. " Digital and Analog Communication Systems", 6th Edition 2001, Prentice-Hill International, INC. 3. B.P. Lathi, "Modern Digital and Analog Communication Systems", 3rd Edition 1998, Oxford University Press, INC. 4. Martin S. Roden, "Analog and Digital Communication Systems", 4th Edition 2000 Prentice-Hill International, INC. Websites

File: digital-communications.pdf
Author: Mohammad
Published: Tue Sep 8 14:04:25 2009
Pages: 6
File size: 0.04 Mb


, pages, 0 Mb

, pages, 0 Mb

Death in the family, 14 pages, 0.09 Mb
Copyright © 2018 doc.uments.com