Search for diphoton events with large missing transverse momentum in 1 fb, A Collaboration

Tags: Physics Letters, United Kingdom, ATLAS Collaboration, Dipartimento di Fisica, Physics Department, ATLAS detector, United States, events, Institute of Physics, SUSY, Department of Physics and Astronomy, Particle Physics, Physics and Astronomy, Department of Physics, Institut National Polytechnique de Grenoble, University of Edinburgh, Technical University Dresden, A. Shibata, University of Texas at Dallas, Iowa State University, Physikalisches Institut, Duke University, P.R. Newman, P. Gerlach, J. Godfrey, J. Collot, supersymmetry breaking, KK, collision data, Colijn, A.P., S. Gonzalez, M. Dameri, SUPA � School of Physics and Astronomy, Laboratoire de Physique Subatomique et de Cosmologie, GGM, Tbilisi State University, C. Dallapiccola, C. Daum, Harvard University, G. Navarro, E. Oliver Garcia, M. Primavera, E. Pasqualucci, C. Oropeza Barrera, A. Schwartzman, F. Pastore, C. Padilla Aranda, M. Schumacher, A. Poppleton, F. Mueller, K. Mueller, A. Negri, J. Mueller, J. Nadal, M. Nordberg, K. Nikolopoulos, S.V. Mouraviev, C. Santamarina Rios, K. Prokofiev, A.D. Pilkington, P. Nevski, A.A. Nepomuceno, C. Schroeder, R. Rezvani, M. Oliveira, M. Robinson, K. Nagano, A. Salamon, L. Pontecorvo, D. Muenstermann, D. Silverstein, L. Rumyantsev, D. Roda Dos Santos, S. Nelson, F. Safai Tehrani, T. Nattermann
Content: UvA-DARE (Digital Academic Repository) Search for diphoton events with large missing transverse momentum in 1 fb1 of 7 TeV proton-proton collision data with the ATLAS detector Aad, G.; et al., [Unknown]; Bentvelsen, S.C.M.; Colijn, A.P.; de Jong, P.J.; de Nooij, L.; Doxiadis, A.; Garitaonandia, H.; Geerts, D.A.A.; Gosselink, M.; Kayl, M.S.; Koffeman, E.N.; Lee, H.C.; Linde, F.L.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.M.; Tsiakiris, M.; van der Kraaij, E.E.; van der Leeuw, R.H.L.; van der Poel, E.F.; van Kesteren, Z.; van Vulpen, I.B.; Vermeulen, J.C.; Vreeswijk, M. Published in: Physics Letters B DOI: 10.1016/j.physletb.2012.02.054 Link to publication Citation for published version (APA): Aad, G., et al., . U., Bentvelsen, S., Colijn, A. P., de Jong, P., de Nooij, L., ... Vreeswijk, M. (2012). Search for diphoton events with large missing transverse momentum in 1 fb1 of 7 TeV proton-proton collision data with the ATLAS detector. Physics Letters B, 710(4-5), 519-537. DOI: 10.1016/j.physletb.2012.02.054 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) Download date: 16 May 2018
Physics Letters B 710 (2012) 519­537 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb
Search for diphoton events with large missing transverse momentum in 1 fb-1 of 7 TeV proton­proton collision data with the ATLAS detector .ATLAS Collaboration
article info Article history: Received 17 November 2011 Received in revised form 3 February 2012 Accepted 16 February 2012 Available online 22 February 2012 Editor: H. Weerts
abstract
A search 1.07 fb-1
for diphoton events with of proton­proton collision
large missing transverse momentum has been performed using data at s = 7 TeV recorded with the ATLAS detector. No excess
of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits
are set on the production cross section for new physics. The limits depend on each model parameter
space and vary as follows: < (22­129) fb in the context of a generalised model of gauge-mediated
supersymmetry breaking (GGM) with a bino-like lightest neutralino, < (27­91) fb in the context of a
minimal model of gauge-mediated supersymmetry breaking (SPS8), and < (15­27) fb in the context of
a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino
masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on
the SPS8 breaking scale and on the UED compactification scale 1/R, respectively. These limits provide
the most stringent tests of these models to date.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction
This Letter reports on the search for diphoton ( ) events
with
large
missing
transverse
momentum
(
E
miss T
)
in
1.07
fb-1
of
proton­proton (pp) collision data at s = 7 TeV recorded with
the ATLAS detector in the first half of 2011, extending a prior study performed with 36 pb-1 [1]. The results are interpreted in
the context of three models of new physics: a general model of
gauge-mediated supersymmetry breaking (GGM) [2­4], a minimal
model of gauge-mediated supersymmetry breaking (SPS8) [5], and
a model positing one universal extra dimension (UED) [6­8].
2. Supersymmetry
Supersymmetry (SUSY) [9­14] introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) with identical quantum numbers except a difference by half a unit of spin for each Standard Model (SM) particle. As none of these sparticles have been observed, SUSY must be a broken symmetry if realized in nature. Assuming R-parity conservation [15,16], sparticles have to be produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP) is produced, which is stable. In gauge-mediated SUSY breaking (GMSB) models [17­21] the LSP is the gravitino G~ . GMSB experimental signatures are largely
© CERN for the benefit of the ATLAS Collaboration. E-mail address: [email protected] 0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.physletb.2012.02.054
determined by the nature of the next-to-lightest SUSY parti-
cle (NLSP), which for a large part of the GMSB parameter space is the lightest neutralino ~10. Should the lightest neutralino have similar couplings as the SM U(1) gauge boson, also referred to as
"bino" in this case, the final decay in the cascade would predomi-
nantly be ~10 G~ , with two cascades per event, leading to final
states
with

+
E
miss T
,
where
E
miss T
results
from
the
undetected
gravitinos.
Searches for GMSB performed at the Tevatron [22,23] were op-
timized to be sensitive to a minimal GMSB model (SPS8) [5]. To
reduce the number of free parameters in this model, several as-
sumptions are made. These assumptions lead to a mass hierarchy
in which squarks and gluinos are much heavier than the light- est neutralino and chargino ~1±. The SUSY breaking mass scale felt by the low-energy sector, , is the only free parameter of
the SPS8 model. The other model parameters are fixed to the fol-
lowing values: the messenger mass Mmess = 2, the number of copies of 5 + 5Ї SU(5) messengers N5 = 1, the ratio of the vacuum expectation values of the two Higgs doublets tan = 15,
and the Higgs sector mixing parameter > 0. The NLSP is as-
sumed to decay promptly (cNLSP < 0.1 mm). At the present LHC energy the main contribution to the production cross section in
the SPS8 model is via gaugino pair production, i.e. production of ~20~1± or ~20~20 pairs. The contribution from gluino and/or squark pairs is below 10% of the production cross section due to their
high masses. Besides the two photons and the two gravitinos,
jets, leptons, and gauge bosons may be produced in the cascades.
This Letter presents the first limits on the SPS8 model at the
LHC. Furthermore, a GGM SUSY model is considered in which the
520
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
gluino and neutralino masses are treated as free parameters. The other sparticle masses arefixed at 1.5 TeV, leading to a dominant production mode at s = 7 TeV of a pair of gluinos via the strong interaction that would decay via cascades into the bino-like neutralino NLSP. Jets may be produced in the cascades from the gluino decays if kinematically allowed. Further model parameters are fixed to tan = 2 and cNLSP < 0.1 mm. The decay into the wino-like neutralino NLSP is possible and was studied by the CMS Collaboration [24].
3. Extra dimensions
UED models postulate the existence of additional spatial di-
mensions in which all SM particles can propagate, leading to the
existence of a series of excitations for each SM particle, known
as a Kaluza­Klein (KK) tower. This analysis considers the case of
a single UED, with compactification radius (size of the extra dimension) R 1 TeV-1. At the LHC, the main UED process would
be the production via the strong interaction of a pair of first-level
KK quarks and/or gluons [25]. These would decay via cascades in-
volving other KK particles until reaching the lightest KK particle (LKP), i.e. the first level KK photon . SM particles such as quarks,
gluons, leptons, and gauge bosons may be produced in the cas-
cades. If the UED model is embedded in a larger space with N additional eV-1-sized dimensions accessible only to gravity [26],
with a (4 + N)-dimensional Planck scale (M D ) of a few TeV, the LKP would decay gravitationally via + G. G represents a
tower of eV-spaced graviton states, leading to a graviton mass be-
tween 0 and 1/R. With two decay chains per event, the final state
would
contain

+
E
miss T
,
where
E
miss T
results
from
the
escaping
gravitons. Up to 1/R 1 TeV, the branching ratio to the dipho-
ton
and
E
miss T
final
state
is
close
to
100%.
As
1/R
increases,
the
gravitational decay widths become more important for all KK par-
ticles and the branching ratio into photons decreases, e.g. to 50%
for 1/R = 1.5 TeV [7].
The UED model considered here is defined by specifying R and
, the ultraviolet cut-off used in the calculation of radiative cor-
rections to the KK masses. This analysis sets such that R = 20. The mass is insensitive to , while other KK masses typically
change by a few per cent when varying R in the range 10­30. For
1/R = 1200 GeV, the masses of the first-level KK photon, quark,
and gluon are 1200, 1387 and 1468 GeV, respectively [27]. Further
details of the model are given in Ref. [1].
4. Simulated samples
For the GGM model, the SUSY mass spectra were calculated using SUSPECT 2.41 [28] and SDECAY 1.3 [29]. The Monte Carlo (MC) signal samples were produced using PYTHIA 6.423 [30] with MRST2007 LO* [31] parton distribution functions (PDF). Cross sections were calculated at next-to-leading order (NLO) using PROSPINO 2.1 [32,33]. For the SPS8 model, the SUSY mass spectra were calculated using ISAJET 7.80 [34]. The MC signal samples were produced using HERWIG++ 2.4.2 [35] with MRST2007 LO* PDF. NLO cross sections were calculated using PROSPINO. In the case of the UED model, MC signal samples were generated using the UED model as implemented at leading order (LO) in PYTHIA [27]. The "irreducible" background from (W ) and (Z ) production was simulated at LO using MadGraph 4 [36] with CTEQ6L1 [37] PDF. Parton showering and fragmentation were simulated with PYTHIA. NLO cross sections and scale uncer- tainties from Refs. [38,39] were used. In all cases the underlying event was simulated within the respective generator.
All samples were processed through the GEANT4-based simulation [40] of the ATLAS detector [41]. In addition, the signal samples were overlaid with simulated minimum bias events to model the average number of six pp interactions per bunch crossing (pile-up) experienced during the considered data-taking period. More details may be found in Ref. [1]. 5. ATLAS detector The ATLAS detector [42] is a multi-purpose apparatus with a forward­backward symmetric cylindrical geometry and nearly 4 solid angle coverage. Closest to the beamline are tracking devices comprised of layers of silicon-based pixel and strip detectors cover- ing || < 2.51 and straw-tube detectors covering || < 2.0, located inside a thin superconducting solenoid that provides a 2 T magnetic field. The straw-tube detectors also provide discrimination between electrons and charged hadrons based on transition radiation. Outside the solenoid, fine-granularity lead/liquid-argon (LAr) electromagnetic (EM) calorimeters provide coverage for || < 3.2 to measure the energy and position of electrons and photons. In the region || < 2.5, the EM calorimeters are segmented into three layers in depth. The second layer, in which most of the EM shower energy is deposited, is divided into cells of granularity of Ч = 0.025 Ч 0.025. The first layer is segmented with finer granularity to provide discrimination between single photons and overlapping photons coming from the decays of neutral mesons. A presampler, covering || < 1.8, is used to correct for energy lost upstream of the EM calorimeter. An iron/scintillating- tile hadronic calorimeter covers the region || < 1.7, while cop- per and liquid-argon technology is used for hadronic calorime- ters in the end-cap region 1.5 < || < 3.2. In the forward region 3.2 < || < 4.5 liquid-argon calorimeters with copper and tung- sten absorbers measure the electromagnetic and hadronic energy. A muon spectrometer consisting of three superconducting toroidal magnet systems, tracking chambers, and detectors for triggering surrounds the calorimeter system. 6. Object reconstruction The reconstruction of converted and unconverted photons and of electrons is described in Refs. [43] and [44], respectively. Converted photons have EM calorimeter clusters matched to tracks coming from a conversion vertex. A conversion vertex is either a vertex that has two tracks with large transition radiation in the straw-tube detector and an invariant mass of the two tracks consistent with a massless particle, i.e. a photon, or one track with large transition radiation that has no associated hits in the pixel layer closest to the beam line. Electrons have a track matched to the EM calorimeter cluster, and the track must have hits in the silicon detectors, momentum not smaller than one tenth the cluster energy, and transverse momentum of at least 2 GeV. Clusters matched to neither a track or tracks coming from a conversion vertex nor an electron track as described above are classified as unconverted photons. A heuristic using the pixel hits closest to the beam line and the track momenta is applied to choose between the photon and electron interpretation in cases where the object can be both. 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (R, ) are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as = - ln tan(/2).
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
521
Photon candidates were required to be within || < 1.81, the
value being chosen by an optimization of the signal acceptance
versus background rejection, and to be outside the transition
region 1.37 < || < 1.52 between the barrel and the end-cap
calorimeters. The analysis used "loose" and "tight" photon selec-
tions [43]. The loose photon selection includes a limit on the frac-
tion of the energy deposit in the hadronic calorimeter as well as
a requirement that the transverse width of the shower, measured
in the middle layer of the EM calorimeter, be consistent with the
narrow shape expected for an EM shower. The tight photon se-
lection additionally uses shape information from the first layer to
distinguish between isolated photons and photons from the decay
of neutral mesons.
The
reconstruction
of
E
miss T
is
based
on
energy
deposits
in
calorimeter cells inside three-dimensional clusters with || < 4.5
and is corrected for contributions from muons, if any [45]. The
cluster energy is calibrated to correct for the non-compensating
calorimeter response, energy loss in dead material, and out-of-
cluster energy.
Jets were reconstructed using the anti-kt jet algorithm [46] with four-momentum recombination and radius parameter R = 0.4 in
­ space. They were required to have pT > 25 GeV and || < 2.8.
7. Data Analysis
The data sample, corresponding to an integrated luminosity of (1.07 ± 0.04) fb-1, was selected by a trigger requiring two loose
photon candidates with a transverse energy (ET) above 20 GeV. In the offline analysis events were retained if they contained at
least two tight photon candidates with ET > 25 GeV. In addition,
a photon isolation cut was applied, whereby the ET deposit in a cone of radius 0.2 in the ­ space around the centre of the
cluster, excluding the cells belonging to the cluster, had to be less
than 5 GeV. The ET was corrected for leakage from the photon en-
ergy outside the cluster and for soft energy deposits from pile-up
interactions.
A
cut
of
E
miss T
> 125
GeV
[1]
defined
the
signal
re-
gion. Preference was given to a common signal region for the three
models considered.
A total of 27 293 candidate events were observed pass-
ing
all
selections
except
the
E
miss T
cut.
The
ET
distribution
of
the
leading photon for events in this sample is shown in Fig. 1. Also
shown are the ET spectra obtained from GGM MC samples for mg~ = 800 GeV and m~10 = 400 GeV, from SPS8 MC samples with = 140 TeV, and from UED MC samples for 1/R = 1200 GeV,
representing model parameters near the expected exclusion limit.
After
the
E
miss T
> 125
GeV
cut,
5
candidate
events
survived.
8. Background estimation
Following the procedure described in Ref. [1], the contribution
to
large
E
miss T
diphoton
events
from
SM
sources
can
be
grouped
into two primary components and estimated with dedicated con-
trol samples using data. The first of these components, referred
to as "QCD background" for brevity, arises from a mixture of pro-
cesses that include production as well as + jet and multijet
events with at least one jet mis-reconstructed as a photon. The second background component is due to W + X and ttЇ events,
where mis-reconstructed photons can arise from electrons and jets,
for
which
final-state
neutrinos
produce
significant
E
miss T
.
In order to estimate the QCD background from , + jet,
and multijet events, a "QCD control sample" was extracted from
the diphoton trigger sample by selecting events for which at least
one of the photon candidates does not pass the tight photon iden-
tification. Electrons were vetoed to remove contamination from
W e decays. The QCD background contamination in the signal
Fig. 1. The ET spectrum of the leading photon in the candidate events in the
data (points, statistical uncertainty only) together with the spectra from simulated
GGM (mg~ , m~10 = (800, 400) GeV), SPS8 ( = 140 TeV), and UED (1/R = 1200 GeV)
samples,
prior
to
the
application
of
the
E
miss T
>
125
GeV
cut.
The
signal
samples
are
scaled by a factor of 100 for clarity.
region
E
miss T
> 125
GeV
was
obtained
from
this
QCD
template
af-
ter
normalizing
it
to
data
in
the
region
E
miss T
<
20
GeV.
This
gives
a
QCD background expectation in the signal region of 0.8 ± 0.3(stat)
events. An alternate model for the QCD background was obtained
using a sample of dielectron events, with no jets, selected by re-
quiring two electrons with ET > 25 GeV and || < 1.81 and an
invariant mass consistent with the Z boson mass. As confirmed
by
MC
simulation,
the
E
miss T
spectrum
of
this
Z
ee
sample
with
no additional jets, which is dominated by the calorimeter response
to
two
genuine
EM
objects,
accurately
represents
the
E
miss T
spec-
trum of SM events. This spectrum was normalized in the same
way as the QCD control sample. An uncertainty of 0.6 events was
assigned as the systematic uncertainty on the background predic-
tion from the relative fractions of , + jet, and multijet events
using the difference between the background estimates obtained
using the QCD and the Z ee templates, yielding the result of
0.8 ± 0.3(stat) ± 0.6(syst)
events.
The
E
miss T
spectra
of
the
QCD
background and the sample are shown in Fig. 2.
The second significant background contribution, from W + X and ttЇ events, was estimated via an "electron­photon" control
sample composed of events with at least one photon and one
electron, each with ET > 25 GeV, and scaled by the probability for an electron to be mis-reconstructed as a tight photon, as es-
timated from a study of the Z boson in the ee and e sample.
The scaling factor varies between 5% and 17% as a function of
, since it depends on the amount of material in front of the
calorimeter. Events with two or more photons were vetoed from
the control sample to keep it orthogonal to the signal sample. In
case of more than one electron, the one with the highest pT was
used.
The
E
miss T
spectrum
for
the
scaled
electron­photon
control
sample is shown in Fig. 3, where it is compared to the expected
contributions from various background sources as computed from
MC simulation. The electron­photon control sample has a signifi-
cant contamination from Z ee events, in which one electron is
mis-reconstructed as a photon, and from QCD processes mentioned
above. Both of these contaminations must be subtracted in order to
extract
the
contribution
to
the
E
miss T
distribution
from
events
with
genuine
E
miss T
,
such
as
W
+
X
and
ttЇ.
The
contribution
from
QCD
and Z ee events was estimated by normalizing the QCD control
sample
to
the
scaled
electron­photon
E
miss T
distribution
in
the
re-
522
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
Table 1
Number
of
observed

candidates
in
various
E
miss T
ranges
in
the
data,
as
well
as
the
expected
numbers
of
SM
background events
estimated
from
the QCD
and
electron­
photon control samples and, for the irreducible Z ( Ї ) + and W ( ) + processes, from MC simulation. Also shown are the expected numbers of signal events
from
GGM
with
(mg~ , m~10 ) = (800, 400)
GeV,
SPS8
with
= 140
TeV,
and
UED
with
1/R
= 1200
GeV.
The
uncertainties
are
statistical
only.
The
E
miss T
< 20
GeV
region
(first
row) is used to normalize the QCD background to the number of observed candidates.
E
miss T
range
[GeV]
Data events
Predicted background events
Total
QCD
W /ttЇ( e) + X
Irreducible
Expected signal events
GGM
SPS8
UED
0­20 20­50 50­75 75­100 100­125 >125
20881 6304 86 11 6 5
­ 5968 ± 29 87.1 ± 3.3 14.7 ± 1.2 4.9 ± 0.7 4.1 ± 0.6
­ 5951 ± 28 60.9 ± 2.8 6.7 ± 0.9 1.6 ± 0.4 0.8 ± 0.3
­ 13.3 ± 8.1 25.2 ± 1.7 7.4 ± 0.8 3.0 ± 0.5 3.1 ± 0.5
­ 3.55 ± 0.35 1.01 ± 0.16 0.52 ± 0.10 0.32 ± 0.08 0.23 ± 0.05
0.20 ± 0.05 0.45 ± 0.08 0.48 ± 0.08 0.75 ± 0.10 1.20 ± 0.12 17.2 ± 0.5
0.22 ± 0.04 1.53 ± 0.10 2.19 ± 0.12 2.09 ± 0.11 2.53 ± 0.13 12.98 ± 0.28
0.02 ± 0.01 0.11 ± 0.01 0.14 ± 0.01 0.15 ± 0.01 0.29 ± 0.02 9.67 ± 0.11
Fig. 2.
E
miss T
spectra for the

candidate events in data (points, statistical un-
certainty only) and the estimated QCD background (normalized to the number of

candidates with
E
miss T
<
20
GeV),
the
W ( e) + jets/
and
ttЇ( e) + jets
backgrounds as estimated from the electron­photon control sample, and the irre-
ducible background of Z ( Ї ) + and W ( ) + . Also shown are the
expected signals from GGM (mg~ , m~10 = (800, 400) GeV), SPS8 ( = 140 TeV), and UED (1/R = 1200 GeV) samples.
Fig. 3.
E
miss T
spectrum
for
the
electron­photon
control
sample
in
data
(points,
sta-
tistical uncertainty only), normalized according to the probability for an electron
to be mis-reconstructed as a tight photon, compared to the expected backgrounds
displayed by components (stacked histograms). For the purpose of this comparison, the expected contributions from W ( e) + jets/ and ttЇ( e) + jets events are
taken from MC simulation.
gion
E
miss T
<
20
GeV
where
they
dominate,
as
shown
in
Fig.
3.
This
distribution was then subtracted from the scaled electron­photon
control sample, yielding a prediction for the contribution to the
high-
E
miss T
diphoton
sample
from
W
+
X
and
ttЇ
events.
This
pro-
cedure led to an estimate of the background from W + X and ttЇ
production of 3.1 ± 0.5(stat) events in the signal region. A system-
atic uncertainty of 0.06 events was assigned by using the Z ee
template in place of the QCD template when subtracting the con-
tamination due to Z ee and QCD processes. The contribution
from W W events to the electron­photon control sample was esti-
mated using MC simulation and found to be negligible.
A parallel study using MC samples of W ( e) + jets/ and ttЇ( e) + jets, rather than the electron­photon control sample,
gave an estimate of 1.8 ± 1.2(stat) background events. The differ-
ence was taken as an estimate of the systematic uncertainty, yield-
ing the result of 3.1 ± 0.5(stat) ± 1.4(syst) events. Also included
in the quoted systematic uncertainty is the relative uncertainty
(±10%) on the probability for an electron to be mis-reconstructed
as a photon.
A small irreducible background of 0.23 ± 0.05(stat) ± 0.04(syst)
events from Z ( Ї ) + and W ( ) + events was es-
timated from MC simulation. The systematic uncertainty accounts
for variations in the factorization and renormalization scales in the
NLO calculations. The contamination from cosmic-ray muons was
found to be negligible.
Fig.
2
shows the
E
miss T
spectrum
of
the
selected

candidates,
superimposed on the estimated backgrounds. Table 1 summarizes
the number of observed candidates, the expected backgrounds,
and three representative GGM, SPS8, and UED signal expectations,
in
several
E
miss T
ranges.
No
indication
of
an
excess
at
high
E Tmiss
values, where the signal is expected to dominate, is observed.
9. Signal efficiencies and systematic uncertainties
The GGM signal efficiency was determined using MC simulation over an area of the GGM parameter space that ranges from 400 GeV to 1200 GeV for the gluino mass, and from 50 GeV to within 20 GeV of the gluino mass for the neutralino mass. The efficiency increases smoothly from 5.5% to 31% for (mg~ , m~10 ) = (400, 50) GeV to (1200, 1100) GeV. The SPS8 signal efficiency increases smoothly from 9.2% ( = 80 TeV) to 29.4% ( = 220 TeV). The UED signal efficiency, also determined using MC simulation, increases smoothly from 48.9% (1/R = 1000 GeV) to 52.6% (1/R = 1500 GeV). The various relative systematic uncertainties on the GGM, SPS8, and UED signal cross sections are summarized in Table 2 for the chosen GGM, SPS8, and UED reference points. The uncertainty on the luminosity is 3.7% [47,48]. The trigger efficiency of the required diphoton trigger was estimated from the efficiency of the corresponding single photon trigger, which was estimated using a bootstrap method [49]. The result is 99.92+-00..0148% for events passing
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
523
Table 2 Relative systematic uncertainties on the expected signal yield for GGM with (mg~ , m~10 ) = (800, 400) GeV, SPS8 with = 140 TeV, and UED with 1/R = 1200 GeV. No PDF and scale uncertainties are given for the UED case as the cross section is evaluated only to LO.
Source of uncertainty
Integrated luminosity
Trigger
Photon identification
Photon isolation
Pile-up
E
miss T
reconstruction
and
scale
LAr readout
Signal MC statistics
Total signal uncertainty
PDF and scale
Total
Uncertainty GGM 3.7% 0.6% 3.9% 0.6% 1.3% 1.7% 1.0% 2.9% 6.6% 31% 32%
SPS8 3.7% 0.6% 3.9% 0.6% 1.3% 5.6% 0.7% 2.3% 8.3% 5.5% 10%
UED 3.7% 0.6% 3.7% 0.5% 1.6% 0.7% 0.4% 1.8% 6.0% ­ 6.0%
all
selections
except
the
final
E
miss T
cut.
To
estimate
the
systematic
uncertainty due to the unknown composition of the data sample,
the trigger efficiency was also evaluated on MC events using mis-
reconstructed photons from filtered multijet samples and photons
from signal (SUSY and UED) samples. A conservative systematic
uncertainty of 0.6% was derived from the difference between the
obtained efficiencies. Uncertainties on the photon selection, the
photon energy scale, and the detailed material composition of the
detector, as described in Ref. [1], result in an uncertainty of 3.9%
for the GGM and SPS8 signals and 3.7% for the UED signal. The
uncertainty from the photon isolation was estimated by varying
the energy leakage and the pile-up corrections independently, re-
sulting in an uncertainty of 0.6% for GGM and SPS8 and 0.5% for
UED. The influence of pile-up on the signal efficiency, evaluated
by comparing GGM/SPS8 (UED) MC samples with different pile-
up configurations, leads to a systematic uncertainty of 1.3%(1.6%).
Systematic
uncertainties
due
to
the
E
miss T
reconstruction,
estimated
by varying the cluster energies within established ranges and the
E
miss T
resolution
between
the
measured
performance
and
MC
ex-
pectations, contribute an uncertainty of 0.1% to 12.4% (GGM), 1.7%
to 13.8% (SPS8), and 0.5% to 1.5% (UED). A systematic uncertainty
was also assigned to account for temporary failures of the LAr
calorimeter readout during part of the data-taking period, which
was not modeled in the MC samples. Electrons and photons were
removed from the afflicted area, but jets, being larger objects, were
not. Jet energy corrections were therefore applied. Varying these
corrections over their range of uncertainty results in systematic
uncertainties of 1.0%, 0.7%, and 0.4% for GGM, SPS8, and UED, re-
spectively. Added in quadrature, the total systematic uncertainty
on the signal yield varies between 6.3% and 15% (GGM), 6.2% and
15% (SPS8), and 5.8% and 6.0% (UED).
The PDF uncertainties on the GGM (SPS8) cross sections were
evaluated by using the CTEQ6.6M PDF error sets [50] in the
PROSPINO cross section calculation and range from 12% to 44%
(4.7% to 6.6%). The factorization and renormalization scales in the
NLO PROSPINO calculation were increased and decreased by a
factor of two, leading to a systematic uncertainty between 16%
and 23% (1.7% and 6.7%) on the expected cross sections. The dif-
ferent impact of the PDF and scale uncertainties of the GGM and
SPS8 yields is related to the different production mechanisms in
the two models (see Section 2). In the case of UED, the PDF un-
certainties were evaluated by using the MSTW2008 LO [51] PDF
error sets in the LO cross section calculation and are about 4%. The
scale of s in the LO cross section calculation was increased and decreased by a factor of two, leading to a systematic uncertainty
of 4.5% and 9%, respectively. NLO calculations are not yet avail-
Fig. 4. Expected and observed 95% CL lower limits on the gluino mass as a function of the neutralino mass in the GGM model with a bino-like lightest neutralino NLSP (the grey area indicates the region where the NLSP is the gluino, which is not considered here). The other sparticle masses are fixed to 1.5 TeV. Further model parameters are tan = 2 and cNLSP < 0.1 mm. The previous ATLAS [1] and CMS [52] limits are also shown. able, but are expected to be much larger than the PDF and scale uncertainties. Thus, the LO cross sections were used for the limit calculation without any theoretical uncertainty, and the effect of PDF and scale uncertainties on the final limit is given separately.
10. Results
Based
on
the
observation
of
5
events
with
E
miss T
> 125
GeV
and
a background expectation of 4.1 ± 0.6(stat) ± 1.6(syst) events, a
95% CL upper limit is set on the number of events in the signal re-
gion from any scenario of physics beyond the SM using the profile
likelihood and C Ls method [53]. The result is 7.1 events at 95% CL. Further, 95% CL upper limits on the cross sections of the con-
sidered models are calculated, including all systematic uncertain-
ties except for theory uncertainties, i.e. PDF and scale. In the
GGM model the upper limit on the cross section is (22­129) fb,
where the larger value corresponds to mg~ , m~10 = (400, 50) GeV. For m~10 150 GeV, the limit is below 30 fb, reaching 22 fb for heavy neutralino masses. Fig. 4 shows the expected and observed
lower limits on the GGM gluino mass as a function of the neu-
tralino mass. For comparison the lower limits from ATLAS [1] and
CMS [52] based on the 2010 data are also shown. The total sys-
tematic uncertainty includes the theory uncertainties, which are
dominant. Excluding the PDF and scale uncertainty in the limit cal-
culation would improve the observed limit on the gluino mass by
10 GeV.
In the SPS8 model the cross section limit is < (27­91) fb as
shown in Fig. 5, corresponding to = 220­80 TeV. For illustration
the cross section dependence as a function of the lightest neu-
tralino and chargino masses is also shown. A lower limit on the
SPS8 breaking scale > 145 TeV at 95% CL is set including the
theory uncertainties, i.e. PDF and scale uncertainties, in the total
systematic uncertainty.
For the UED model the cross section limit is < (15­27) fb for
1/R = 1000­1500 GeV. Fig. 6 shows the limit on the cross section
times branching ratio for the UED model, which is < (13­15) fb.
For illustration the cross section dependence as a function of the
KK quark and KK gluon masses is also shown. A lower limit on the
UED compactification scale 1/R > 1.23 TeV at 95% CL is set. In this
case PDF and scale uncertainties are not included when calculating
524
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
Fig. 5. Expected and observed 95% CL upper limits on the sparticle production cross section in the SPS8 model, and the NLO cross section prediction, as a function of and the lightest neutralino and chargino masses. Further SPS8 model parameters are Mmess = 2, N5 = 1, tan = 15, and cNLSP < 0.1 mm.
Fig. 6. Expected and observed 95% CL upper limits on the KK particle production cross section times branching fraction to two photons in the UED model, and the LO cross section prediction times branching fraction, as a function of 1/R and the KK quark ( Q ) and KK gluon (g) masses. The UED model parameters are N = 6, M D = 5 TeV, and R = 20.
the limits. Including PDF and scale uncertainties computed at LO degrade the limit on 1/R by a few GeV.
11. Conclusions
A
search
for
events
with
two
photons
and
E
miss T
>
125
GeV,
performed using 1.07 fb-1 of 7 TeV pp collision data recorded
with the ATLAS detector at the LHC, found 5 events with an ex-
pected background of 4.1 ± 0.6(stat) ± 1.6(syst). The results are
used to set a model-independent 95% CL upper limit of 7.1 events
from new physics. Upper limits at 95% CL are also set on the pro-
duction cross section for three particular models of new physics:
< (22­129) fb for the GGM model, < (27­91) fb for the SPS8
model, and < (15­27) fb for the UED model. Under the GGM
hypothesis, a lower limit on the gluino mass of 805 GeV is determined for bino masses above 50 GeV. A lower limit of 145 TeV is set on the SPS8 breaking scale , which is the first limit on the SPS8 model at the LHC. A lower limit of 1.23 TeV is set on the UED compactification scale 1/R. These results provide the most stringent tests of these models to date, significantly improving upon previous best limits of 560 GeV [1] for the GGM gluino mass, 124 TeV [23] for in SPS8, and 961 GeV [1] for 1/R in UED, respectively. Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. Open access This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. References [1] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1744, arXiv:1107.0561 [hep-ex]. [2] P. Meade, N. Seiberg, D. Shih, Prog. Theor. Phys. Suppl. 177 (2009) 143, arXiv: 0801.3278 [hep-ph]. [3] M. Buican, P. Meade, N. Seiberg, D. Shih, JHEP 0903 (2009) 016, arXiv: 0812.3668 [hep-ph]. [4] J.T. Ruderman, D. Shih, General neutralino NLSPs at the early LHC, arXiv: 1103.6083 [hep-ph]. [5] B.C. Allanach, et al., Eur. Phys. J. C 25 (2002) 113, arXiv:hep-ph/0202233. [6] T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64 (2001) 035002, arXiv: hep-ph/0012100. [7] C. Macesanu, C. McMullen, S. Nandi, Phys. Lett. B 546 (2002) 253, arXiv:hep-ph/ 0207269. [8] C. Macesanu, Int. J. Mod. Phys. A 21 (2006) 2259, arXiv:hep-ph/0510418. [9] P. Ramond, Phys. Rev. D 3 (1971) 2415. [10] Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323. [11] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86. [12] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 1109. [13] D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109. [14] J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39.
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
525
[15] P. Fayet, Phys. Lett. B 69 (1977) 489. [16] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575. [17] M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189 (1981) 575. [18] S. Dimopoulos, S. Raby, Nucl. Phys. B 192 (1981) 353. [19] L. Alvarez-Gaume, M. Claudson, M. Wise, Nucl. Phys. B 207 (1982) 96. [20] C.R. Nappi, B.A. Ovrut, Phys. Lett. B 113 (1982) 175. [21] M. Dine, A. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53 (1996) 2658, arXiv: hep-ph/9507378. [22] CDF Collaboration, Phys. Rev. Lett. 104 (2010) 011801, arXiv:0910.3606 [hep- ex]. [23] DШ Collaboration, Phys. Rev. Lett. 105 (2010) 221802, arXiv:1008.2133 [hep- ex]. [24] CMS Collaboration, JHEP 1106 (2011) 093, arXiv:1105.3152 [hep-ex]. [25] C. Macesanu, C. McMullen, S. Nandi, Phys. Rev. D 66 (2002) 015009, arXiv: hep-ph/0201300. [26] A. De Rujula, A. Donini, M. Gavela, S. Rigolin, Phys. Lett. B 482 (2000) 195, arXiv:hep-ph/0001335. [27] M. ElKacimi, D. Goujdami, H. Przysiezniak, P.Z. Skands, Comput. Phys. Com- mun. 181 (2010) 122, arXiv:0901.4087 [hep-ph]. [28] A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176 (2007) 426, arXiv:hep-ph/0211331. [29] M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168 (2005) 46, arXiv:hep-ph/0311167. [30] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175. [31] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hep- ph]. [32] PROSPINO2, http://www.thphys.uni-heidelberg.de/~plehn/index.php?show= prospino. [33] W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492 (1997) 51, arXiv:hep-ph/9610490. [34] F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, pЇ p, and e+e- reactions, arXiv:hep-ph/0312045.
[35] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639, arXiv:0803.0883 [hep-ph].
[36] J. Alwall, et al., JHEP 0709 (2007) 028, arXiv:0706.2334 [hep-ph].
[37] D. Stump, et al., JHEP 0310 (2003) 046, arXiv:hep-ph/0303013.
[38] G. Bozzi, F. Campanario, M. Rauch, D. Zeppenfeld, Phys. Rev. D 84 (2011)
074028, arXiv:1107.3149 [hep-ph].
[39] G. Bozzi, F. Campanario, M. Rauch, D. Zeppenfeld, Phys. Rev. D 83 (2011)
114035, arXiv:1103.4613 [hep-ph].
[40] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003)
250.
[41] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568
[physics.ins-det].
[42] ATLAS Collaboration, JINST 3 (2008) S08003.
[43] ATLAS Collaboration, Phys. Rev. D 83 (2011) 052005, arXiv:1012.4389 [hep-ex].
[44] ATLAS Collaboration, Electron performance measurements with the ATLAS de-
tector using the 2010 LHC proton­proton collision data, Eur. Phys. J. C, in press,
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1, arXiv:1110.3174 [hep-ex].
[45] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, arXiv:1108.5602 [hep-ex].
[46] M. Cacciari, G. Salam, G. Soyez, JHEP 0804 (2008) 063, arXiv:0802.1189 [hep-
ph].

[47] ATLAS Collaboration, Luminosity determination in pp collisions at s = 7 TeV
using the ATLAS detector in 2011, ATLAS-CONF-2011-116, http://cdsweb.cern.
ch/record/1376384.
[48] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185 [hep-ex].
[49] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1849, arXiv:1110.1530 [hep-ex].
[50] D. Stump, J. Huston, J. Pumplin, W.-K. Tung, H. Lai, et al., JHEP 0310 (2003)
046, arXiv:hep-ph/0303013.
[51] A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63 (2008) 189, arXiv:
0901.0002 [hep-ph].
[52] CMS Collaboration, Phys. Rev. Lett. 106 (2011) 211802, arXiv:1103.0953 [hep-
ex].
[53] A.L. Read, J. Phys. G 28 (2002) 2693.
ATLAS Collaboration G. Aad 48, B. Abbott 111, J. Abdallah 11, A.A. Abdelalim 49, A. Abdesselam 118, O. Abdinov 10, B. Abi 112, M. Abolins 88, H. Abramowicz 153, H. Abreu 115, E. Acerbi 89a,89b, B.S. Acharya 164a,164b, D.L. Adams 24, T.N. Addy 56, J. Adelman 175, M. Aderholz 99, S. Adomeit 98, P. Adragna 75, T. Adye 129, S. Aefsky 22, J.A. Aguilar-Saavedra 124b,a, M. Aharrouche 81, S.P. Ahlen 21, F. Ahles 48, A. Ahmad 148, M. Ahsan 40, G. Aielli 133a,133b, T. Akdogan 18a, T.P.A. Еkesson 79, G. Akimoto 155, A.V. Akimov 94, A. Akiyama 67, M.S. Alam 1, M.A. Alam 76, J. Albert 169, S. Albrand 55, M. Aleksa 29, I.N. Aleksandrov 65, F. Alessandria 89a, C. Alexa 25a, G. Alexander 153, G. Alexandre 49, T. Alexopoulos 9, M. Alhroob 20, M. Aliev 15, G. Alimonti 89a, J. Alison 120, M. Aliyev 10, P.P. Allport 73, S.E. Allwood-Spiers 53, J. Almond 82, A. Aloisio 102a,102b, R. Alon 171, A. Alonso 79, M.G. Alviggi 102a,102b, K. Amako 66, P. Amaral 29, C. Amelung 22, V.V. Ammosov 128, A. Amorim 124a,b, G. Amorуs 167, N. Amram 153, C. Anastopoulos 29, L.S. Ancu 16, N. Andari 115, T. Andeen 34, C.F. Anders 20, G. Anders 58a, K.J. Anderson 30, A. Andreazza 89a,89b, V. Andrei 58a, M-L. Andrieux 55, X.S. Anduaga 70, A. Angerami 34, F. Anghinolfi 29, N. Anjos 124a, A. Annovi 47, A. Antonaki 8, M. Antonelli 47, A. Antonov 96, J. Antos 144b, F. Anulli 132a, S. Aoun 83, L. Aperio Bella 4, R. Apolle 118,c, G. Arabidze 88, I. Aracena 143, Y. Arai 66, A.T.H. Arce 44, J.P. Archambault 28, S. Arfaoui 29,d, J-F. Arguin 14, E. Arik 18a,, M. Arik 18a, A.J. Armbruster 87, O. Arnaez 81, C. Arnault 115, A. Artamonov 95, G. Artoni 132a,132b, D. Arutinov 20, S. Asai 155, R. Asfandiyarov 172, S. Ask 27, B. Еsman 146a,146b, L. Asquith 5, K. Assamagan 24, A. Astbury 169, A. Astvatsatourov 52, G. Atoian 175, B. Aubert 4, E. Auge 115, K. Augsten 127, M. Aurousseau 145a, N. Austin 73, G. Avolio 163, R. Avramidou 9, D. Axen 168, C. Ay 54, G. Azuelos 93,e, Y. Azuma 155, M.A. Baak 29, G. Baccaglioni 89a, C. Bacci 134a,134b, A.M. Bach 14, H. Bachacou 136, K. Bachas 29, G. Bachy 29, M. Backes 49, M. Backhaus 20, E. Badescu 25a, P. Bagnaia 132a,132b, S. Bahinipati 2, Y. Bai 32a, D.C. Bailey 158, T. Bain 158, J.T. Baines 129, O.K. Baker 175, M.D. Baker 24, S. Baker 77, E. Banas 38, P. Banerjee 93, Sw. Banerjee 172, D. Banfi 29, A. Bangert 137, V. Bansal 169, H.S. Bansil 17, L. Barak 171, S.P. Baranov 94, A. Barashkou 65, A. Barbaro Galtieri 14, T. Barber 27, E.L. Barberio 86, D. Barberis 50a,50b, M. Barbero 20, D.Y. Bardin 65, T. Barillari 99, M. Barisonzi 174, T. Barklow 143, N. Barlow 27, B.M. Barnett 129, R.M. Barnett 14, A. Baroncelli 134a, G. Barone 49, A.J. Barr 118, F. Barreiro 80, J. Barreiro Guimarгes da Costa 57, P. Barrillon 115, R. Bartoldus 143, A.E. Barton 71, D. Bartsch 20, V. Bartsch 149, R.L. Bates 53, L. Batkova 144a, J.R. Batley 27, A. Battaglia 16, M. Battistin 29, G. Battistoni 89a, F. Bauer 136, H.S. Bawa 143,f , B. Beare 158, T. Beau 78, P.H. Beauchemin 118,
526
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
R. Beccherle 50a, P. Bechtle 41, H.P. Beck 16, S. Becker 98, M. Beckingham 138, K.H. Becks 174, A.J. Beddall 18c, A. Beddall 18c, S. Bedikian 175, V.A. Bednyakov 65, C.P. Bee 83, M. Begel 24, S. Behar Harpaz 152, P.K. Behera 63, M. Beimforde 99, C. Belanger-Champagne 85, P.J. Bell 49, W.H. Bell 49, G. Bella 153, L. Bellagamba 19a, F. Bellina 29, M. Bellomo 29, A. Belloni 57, O. Beloborodova 107, K. Belotskiy 96, O. Beltramello 29, S. Ben Ami 152, O. Benary 153, D. Benchekroun 135a, C. Benchouk 83, M. Bendel 81, N. Benekos 165, Y. Benhammou 153, D.P. Benjamin 44, M. Benoit 115, J.R. Bensinger 22, K. Benslama 130, S. Bentvelsen 105, D. Berge 29, E. Bergeaas Kuutmann 41, N. Berger 4, F. Berghaus 169, E. Berglund 49, J. Beringer 14, K. Bernardet 83, P. Bernat 77, R. Bernhard 48, C. Bernius 24, T. Berry 76, A. Bertin 19a,19b, F. Bertinelli 29, F. Bertolucci 122a,122b, M.I. Besana 89a,89b, N. Besson 136, S. Bethke 99, W. Bhimji 45, R.M. Bianchi 29, M. Bianco 72a,72b, O. Biebel 98, S.P. Bieniek 77, K. Bierwagen 54, J. Biesiada 14, M. Biglietti 134a,134b, H. Bilokon 47, M. Bindi 19a,19b, S. Binet 115, A. Bingul 18c, C. Bini 132a,132b, C. Biscarat 177, U. Bitenc 48, K.M. Black 21, R.E. Blair 5, J.-B. Blanchard 115, G. Blanchot 29, T. Blazek 144a, C. Blocker 22, J. Blocki 38, A. Blondel 49, W. Blum 81, U. Blumenschein 54, G.J. Bobbink 105, V.B. Bobrovnikov 107, S.S. Bocchetta 79, A. Bocci 44, C.R. Boddy 118, M. Boehler 41, J. Boek 174, N. Boelaert 35, S. Bцser 77, J.A. Bogaerts 29, A. Bogdanchikov 107, A. Bogouch 90,, C. Bohm 146a, V. Boisvert 76, T. Bold 37, V. Boldea 25a, N.M. Bolnet 136, M. Bona 75, V.G. Bondarenko 96, M. Bondioli 163, M. Boonekamp 136, G. Boorman 76, C.N. Booth 139, S. Bordoni 78, C. Borer 16, A. Borisov 128, G. Borissov 71, I. Borjanovic 12a, S. Borroni 87, K. Bos 105, D. Boscherini 19a, M. Bosman 11, H. Boterenbrood 105, D. Botterill 129, J. Bouchami 93, J. Boudreau 123, E.V. Bouhova-Thacker 71, C. Bourdarios 115, N. Bousson 83, A. Boveia 30, J. Boyd 29, I.R. Boyko 65, N.I. Bozhko 128, I. Bozovic-Jelisavcic 12b, J. Bracinik 17, A. Braem 29, P. Branchini 134a, G.W. Brandenburg 57, A. Brandt 7, G. Brandt 15, O. Brandt 54, U. Bratzler 156, B. Brau 84, J.E. Brau 114, H.M. Braun 174, B. Brelier 158, J. Bremer 29, R. Brenner 166, S. Bressler 152, D. Breton 115, D. Britton 53, F.M. Brochu 27, I. Brock 20, R. Brock 88, T.J. Brodbeck 71, E. Brodet 153, F. Broggi 89a, C. Bromberg 88, G. Brooijmans 34, W.K. Brooks 31b, G. Brown 82, H. Brown 7, P.A. Bruckman de Renstrom 38, D. Bruncko 144b, R. Bruneliere 48, S. Brunet 61, A. Bruni 19a, G. Bruni 19a, M. Bruschi 19a, T. Buanes 13, F. Bucci 49, J. Buchanan 118, N.J. Buchanan 2, P. Buchholz 141, R.M. Buckingham 118, A.G. Buckley 45, S.I. Buda 25a, I.A. Budagov 65, B. Budick 108, V. Bьscher 81, L. Bugge 117, D. Buira-Clark 118, O. Bulekov 96, M. Bunse 42, T. Buran 117, H. Burckhart 29, S. Burdin 73, T. Burgess 13, S. Burke 129, E. Busato 33, P. Bussey 53, C.P. Buszello 166, F. Butin 29, B. Butler 143, J.M. Butler 21, C.M. Buttar 53, J.M. Butterworth 77, W. Buttinger 27, S. Cabrera Urbбn 167, D. Caforio 19a,19b, O. Cakir 3a, P. Calafiura 14, G. Calderini 78, P. Calfayan 98, R. Calkins 106, L.P. Caloba 23a, R. Caloi 132a,132b, D. Calvet 33, S. Calvet 33, R. Camacho Toro 33, P. Camarri 133a,133b, M. Cambiaghi 119a,119b, D. Cameron 117, S. Campana 29, M. Campanelli 77, V. Canale 102a,102b, F. Canelli 30,g, A. Canepa 159a, J. Cantero 80, L. Capasso 102a,102b, M.D.M. Capeans Garrido 29, I. Caprini 25a, M. Caprini 25a, D. Capriotti 99, M. Capua 36a,36b, R. Caputo 148, R. Cardarelli 133a, T. Carli 29, G. Carlino 102a, L. Carminati 89a,89b, B. Caron 159a, S. Caron 48, G.D. Carrillo Montoya 172, A.A. Carter 75, J.R. Carter 27, J. Carvalho 124a,h, D. Casadei 108, M.P. Casado 11, M. Cascella 122a,122b, C. Caso 50a,50b,, A.M. Castaneda Hernandez 172, E. Castaneda-Miranda 172, V. Castillo Gimenez 167, N.F. Castro 124a, G. Cataldi 72a, F. Cataneo 29, A. Catinaccio 29, J.R. Catmore 71, A. Cattai 29, G. Cattani 133a,133b, S. Caughron 88, D. Cauz 164a,164c, P. Cavalleri 78, D. Cavalli 89a, M. Cavalli-Sforza 11, V. Cavasinni 122a,122b, F. Ceradini 134a,134b, A.S. Cerqueira 23a, A. Cerri 29, L. Cerrito 75, F. Cerutti 47, S.A. Cetin 18b, F. Cevenini 102a,102b, A. Chafaq 135a, D. Chakraborty 106, K. Chan 2, B. Chapleau 85, J.D. Chapman 27, J.W. Chapman 87, E. Chareyre 78, D.G. Charlton 17, V. Chavda 82, C.A. Chavez Barajas 29, S. Cheatham 85, S. Chekanov 5, S.V. Chekulaev 159a, G.A. Chelkov 65, M.A. Chelstowska 104, C. Chen 64, H. Chen 24, S. Chen 32c, T. Chen 32c, X. Chen 172, S. Cheng 32a, A. Cheplakov 65, V.F. Chepurnov 65, R. Cherkaoui El Moursli 135e, V. Chernyatin 24, E. Cheu 6, S.L. Cheung 158, L. Chevalier 136, G. Chiefari 102a,102b, L. Chikovani 51a, J.T. Childers 58a, A. Chilingarov 71, G. Chiodini 72a, M.V. Chizhov 65, G. Choudalakis 30, S. Chouridou 137, I.A. Christidi 77, A. Christov 48, D. Chromek-Burckhart 29, M.L. Chu 151, J. Chudoba 125, G. Ciapetti 132a,132b, K. Ciba 37, A.K. Ciftci 3a, R. Ciftci 3a, D. Cinca 33, V. Cindro 74, M.D. Ciobotaru 163, C. Ciocca 19a,19b, A. Ciocio 14, M. Cirilli 87, M. Ciubancan 25a, A. Clark 49, P.J. Clark 45, W. Cleland 123, J.C. Clemens 83, B. Clement 55, C. Clement 146a,146b, R.W. Clifft 129, Y. Coadou 83, M. Cobal 164a,164c, A. Coccaro 50a,50b, J. Cochran 64, P. Coe 118, J.G. Cogan 143, J. Coggeshall 165, E. Cogneras 177, C.D. Cojocaru 28, J. Colas 4, A.P. Colijn 105,
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
527
C. Collard 115, N.J. Collins 17, C. Collins-Tooth 53, J. Collot 55, G. Colon 84, P. Conde Muiсo 124a, E. Coniavitis 118, M.C. Conidi 11, M. Consonni 104, V. Consorti 48, S. Constantinescu 25a, C. Conta 119a,119b, F. Conventi 102a,i, J. Cook 29, M. Cooke 14, B.D. Cooper 77, A.M. Cooper-Sarkar 118, N.J. Cooper-Smith 76, K. Copic 34, T. Cornelissen 174, M. Corradi 19a, F. Corriveau 85,j, A. Cortes-Gonzalez 165, G. Cortiana 99, G. Costa 89a, M.J. Costa 167, D. Costanzo 139, T. Costin 30, D. Cфtй 29, L. Courneyea 169, G. Cowan 76, C. Cowden 27, B.E. Cox 82, K. Cranmer 108, F. Crescioli 122a,122b, M. Cristinziani 20, G. Crosetti 36a,36b, R. Crupi 72a,72b, S. Crйpй-Renaudin 55, C.-M. Cuciuc 25a, C. Cuenca Almenar 175, T. Cuhadar Donszelmann 139, M. Curatolo 47, C.J. Curtis 17, P. Cwetanski 61, H. Czirr 141, Z. Czyczula 175, S. D'Auria 53, M. D'Onofrio 73, A. D'Orazio 132a,132b, P.V.M. Da Silva 23a, C. Da Via 82, W. Dabrowski 37, T. Dai 87, C. Dallapiccola 84, M. Dam 35, M. Dameri 50a,50b, D.S. Damiani 137, H.O. Danielsson 29, D. Dannheim 99, V. Dao 49, G. Darbo 50a, G.L. Darlea 25b, C. Daum 105, W. Davey 86, T. Davidek 126, N. Davidson 86, R. Davidson 71, E. Davies 118,c, M. Davies 93, A.R. Davison 77, Y. Davygora 58a, E. Dawe 142, I. Dawson 139, J.W. Dawson 5,, R.K. Daya 39, K. De 7, R. de Asmundis 102a, S. De Castro 19a,19b, P.E. De Castro Faria Salgado 24, S. De Cecco 78, J. de Graat 98, N. De Groot 104, P. de Jong 105, C. De La Taille 115, H. De la Torre 80, B. De Lotto 164a,164c, L. De Mora 71, L. De Nooij 105, D. De Pedis 132a, A. De Salvo 132a, U. De Sanctis 164a,164c, A. De Santo 149, J.B. De Vivie De Regie 115, S. Dean 77, R. Debbe 24, D.V. Dedovich 65, J. Degenhardt 120, M. Dehchar 118, C. Del Papa 164a,164c, J. Del Peso 80, T. Del Prete 122a,122b, M. Deliyergiyev 74, A. Dell'Acqua 29, L. Dell'Asta 89a,89b, M. Della Pietra 102a,i, D. della Volpe 102a,102b, M. Delmastro 29, N. Delruelle 29, P.A. Delsart 55, C. Deluca 148, S. Demers 175, M. Demichev 65, B. Demirkoz 11,k, J. Deng 163, S.P. Denisov 128, D. Derendarz 38, J.E. Derkaoui 135d, F. Derue 78, P. Dervan 73, K. Desch 20, E. Devetak 148, P.O. Deviveiros 158, A. Dewhurst 129, B. DeWilde 148, S. Dhaliwal 158, R. Dhullipudi 24,l, A. Di Ciaccio 133a,133b, L. Di Ciaccio 4, A. Di Girolamo 29, B. Di Girolamo 29, S. Di Luise 134a,134b, A. Di Mattia 172, B. Di Micco 29, R. Di Nardo 133a,133b, A. Di Simone 133a,133b, R. Di Sipio 19a,19b, M.A. Diaz 31a, F. Diblen 18c, E.B. Diehl 87, J. Dietrich 41, T.A. Dietzsch 58a, S. Diglio 115, K. Dindar Yagci 39, J. Dingfelder 20, C. Dionisi 132a,132b, P. Dita 25a, S. Dita 25a, F. Dittus 29, F. Djama 83, T. Djobava 51b, M.A.B. do Vale 23a, A. Do Valle Wemans 124a, T.K.O. Doan 4, M. Dobbs 85, R. Dobinson 29,, D. Dobos 29, E. Dobson 29, M. Dobson 163, J. Dodd 34, C. Doglioni 118, T. Doherty 53, Y. Doi 66,, J. Dolejsi 126, I. Dolenc 74, Z. Dolezal 126, B.A. Dolgoshein 96,, T. Dohmae 155, M. Donadelli 23d, M. Donega 120, J. Donini 55, J. Dopke 29, A. Doria 102a, A. Dos Anjos 172, M. Dosil 11, A. Dotti 122a,122b, M.T. Dova 70, J.D. Dowell 17, A.D. Doxiadis 105, A.T. Doyle 53, Z. Drasal 126, J. Drees 174, N. Dressnandt 120, H. Drevermann 29, C. Driouichi 35, M. Dris 9, J. Dubbert 99, S. Dube 14, E. Duchovni 171, G. Duckeck 98, A. Dudarev 29, F. Dudziak 64, M. Dьhrssen 29, I.P. Duerdoth 82, L. Duflot 115, M-A. Dufour 85, M. Dunford 29, H. Duran Yildiz 3b, R. Duxfield 139, M. Dwuznik 37, F. Dydak 29, M. Dьren 52, W.L. Ebenstein 44, J. Ebke 98, S. Eckert 48, S. Eckweiler 81, K. Edmonds 81, C.A. Edwards 76, N.C. Edwards 53, W. Ehrenfeld 41, T. Ehrich 99, T. Eifert 29, G. Eigen 13, K. Einsweiler 14, E. Eisenhandler 75, T. Ekelof 166, M. El Kacimi 135c, M. Ellert 166, S. Elles 4, F. Ellinghaus 81, K. Ellis 75, N. Ellis 29, J. Elmsheuser 98, M. Elsing 29, D. Emeliyanov 129, R. Engelmann 148, A. Engl 98, B. Epp 62, A. Eppig 87, J. Erdmann 54, A. Ereditato 16, D. Eriksson 146a, J. Ernst 1, M. Ernst 24, J. Ernwein 136, D. Errede 165, S. Errede 165, E. Ertel 81, M. Escalier 115, C. Escobar 123, X. Espinal Curull 11, B. Esposito 47, F. Etienne 83, A.I. Etienvre 136, E. Etzion 153, D. Evangelakou 54, H. Evans 61, L. Fabbri 19a,19b, C. Fabre 29, R.M. Fakhrutdinov 128, S. Falciano 132a, Y. Fang 172, M. Fanti 89a,89b, A. Farbin 7, A. Farilla 134a, J. Farley 148, T. Farooque 158, S.M. Farrington 118, P. Farthouat 29, P. Fassnacht 29, D. Fassouliotis 8, B. Fatholahzadeh 158, A. Favareto 89a,89b, L. Fayard 115, S. Fazio 36a,36b, R. Febbraro 33, P. Federic 144a, O.L. Fedin 121, W. Fedorko 88, M. Fehling-Kaschek 48, L. Feligioni 83, C. Feng 32d, E.J. Feng 30, A.B. Fenyuk 128, J. Ferencei 144b, J. Ferland 93, W. Fernando 109, S. Ferrag 53, J. Ferrando 53, V. Ferrara 41, A. Ferrari 166, P. Ferrari 105, R. Ferrari 119a, A. Ferrer 167, M.L. Ferrer 47, D. Ferrere 49, C. Ferretti 87, A. Ferretto Parodi 50a,50b, M. Fiascaris 30, F. Fiedler 81, A. Filipcic 74, A. Filippas 9, F. Filthaut 104, M. Fincke-Keeler 169, M.C.N. Fiolhais 124a,h, L. Fiorini 167, A. Firan 39, G. Fischer 41, P. Fischer 20, M.J. Fisher 109, M. Flechl 48, I. Fleck 141, J. Fleckner 81, P. Fleischmann 173, S. Fleischmann 174, T. Flick 174, L.R. Flores Castillo 172, M.J. Flowerdew 99, M. Fokitis 9, T. Fonseca Martin 16, D.A. Forbush 138, A. Formica 136, A. Forti 82, D. Fortin 159a, J.M. Foster 82, D. Fournier 115, A. Foussat 29, A.J. Fowler 44, K. Fowler 137, H. Fox 71, P. Francavilla 122a,122b, S. Franchino 119a,119b, D. Francis 29, T. Frank 171,
528
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
M. Franklin 57, S. Franz 29, M. Fraternali 119a,119b, S. Fratina 120, S.T. French 27, F. Friedrich 43, R. Froeschl 29, D. Froidevaux 29, J.A. Frost 27, C. Fukunaga 156, E. Fullana Torregrosa 29, J. Fuster 167, C. Gabaldon 29, O. Gabizon 171, T. Gadfort 24, S. Gadomski 49, G. Gagliardi 50a,50b, P. Gagnon 61, C. Galea 98, E.J. Gallas 118, V. Gallo 16, B.J. Gallop 129, P. Gallus 125, E. Galyaev 40, K.K. Gan 109, Y.S. Gao 143,f , V.A. Gapienko 128, A. Gaponenko 14, F. Garberson 175, M. Garcia-Sciveres 14, C. Garcнa 167, J.E. Garcнa Navarro 49, R.W. Gardner 30, N. Garelli 29, H. Garitaonandia 105, V. Garonne 29, J. Garvey 17, C. Gatti 47, G. Gaudio 119a, O. Gaumer 49, B. Gaur 141, L. Gauthier 136, I.L. Gavrilenko 94, C. Gay 168, G. Gaycken 20, J-C. Gayde 29, E.N. Gazis 9, P. Ge 32d, C.N.P. Gee 129, D.A.A. Geerts 105, Ch. Geich-Gimbel 20, K. Gellerstedt 146a,146b, C. Gemme 50a, A. Gemmell 53, M.H. Genest 98, S. Gentile 132a,132b, M. George 54, S. George 76, P. Gerlach 174, A. Gershon 153, C. Geweniger 58a, H. Ghazlane 135b, P. Ghez 4, N. Ghodbane 33, B. Giacobbe 19a, S. Giagu 132a,132b, V. Giakoumopoulou 8, V. Giangiobbe 122a,122b, F. Gianotti 29, B. Gibbard 24, A. Gibson 158, S.M. Gibson 29, L.M. Gilbert 118, V. Gilewsky 91, D. Gillberg 28, A.R. Gillman 129, D.M. Gingrich 2,e, J. Ginzburg 153, N. Giokaris 8, M.P. Giordani 164c, R. Giordano 102a,102b, F.M. Giorgi 15, P. Giovannini 99, P.F. Giraud 136, D. Giugni 89a, M. Giunta 93, P. Giusti 19a, B.K. Gjelsten 117, L.K. Gladilin 97, C. Glasman 80, J. Glatzer 48, A. Glazov 41, K.W. Glitza 174, G.L. Glonti 65, J. Godfrey 142, J. Godlewski 29, M. Goebel 41, T. Gцpfert 43, C. Goeringer 81, C. Gцssling 42, T. Gцttfert 99, S. Goldfarb 87, T. Golling 175, S.N. Golovnia 128, A. Gomes 124a,b, L.S. Gomez Fajardo 41, R. Gonзalo 76, J. Goncalves Pinto Firmino Da Costa 41, L. Gonella 20, A. Gonidec 29, S. Gonzalez 172, S. Gonzбlez de la Hoz 167, M.L. Gonzalez Silva 26, S. Gonzalez-Sevilla 49, J.J. Goodson 148, L. Goossens 29, P.A. Gorbounov 95, H.A. Gordon 24, I. Gorelov 103, G. Gorfine 174, B. Gorini 29, E. Gorini 72a,72b, A. Gorisek 74, E. Gornicki 38, S.A. Gorokhov 128, V.N. Goryachev 128, B. Gosdzik 41, M. Gosselink 105, M.I. Gostkin 65, I. Gough Eschrich 163, M. Gouighri 135a, D. Goujdami 135c, M.P. Goulette 49, A.G. Goussiou 138, C. Goy 4, I. Grabowska-Bold 163,m, P. Grafstrцm 29, K-J. Grahn 41, F. Grancagnolo 72a, S. Grancagnolo 15, V. Grassi 148, V. Gratchev 121, N. Grau 34, H.M. Gray 29, J.A. Gray 148, E. Graziani 134a, O.G. Grebenyuk 121, D. Greenfield 129, T. Greenshaw 73, Z.D. Greenwood 24,l, K. Gregersen 35, I.M. Gregor 41, P. Grenier 143, J. Griffiths 138, N. Grigalashvili 65, A.A. Grillo 137, S. Grinstein 11, Y.V. Grishkevich 97, J.-F. Grivaz 115, M. Groh 99, E. Gross 171, J. Grosse-Knetter 54, J. Groth-Jensen 171, K. Grybel 141, V.J. Guarino 5, D. Guest 175, C. Guicheney 33, A. Guida 72a,72b, T. Guillemin 4, S. Guindon 54, H. Guler 85,n, J. Gunther 125, B. Guo 158, J. Guo 34, A. Gupta 30, Y. Gusakov 65, V.N. Gushchin 128, A. Gutierrez 93, P. Gutierrez 111, N. Guttman 153, O. Gutzwiller 172, C. Guyot 136, C. Gwenlan 118, C.B. Gwilliam 73, A. Haas 143, S. Haas 29, C. Haber 14, R. Hackenburg 24, H.K. Hadavand 39, D.R. Hadley 17, P. Haefner 99, F. Hahn 29, S. Haider 29, Z. Hajduk 38, H. Hakobyan 176, J. Haller 54, K. Hamacher 174, P. Hamal 113, M. Hamer 54, A. Hamilton 49, S. Hamilton 161, H. Han 32a, L. Han 32b, K. Hanagaki 116, M. Hance 14, C. Handel 81, P. Hanke 58a, J.R. Hansen 35, J.B. Hansen 35, J.D. Hansen 35, P.H. Hansen 35, P. Hansson 143, K. Hara 160, G.A. Hare 137, T. Harenberg 174, S. Harkusha 90, D. Harper 87, R.D. Harrington 45, O.M. Harris 138, K. Harrison 17, J. Hartert 48, F. Hartjes 105, T. Haruyama 66, A. Harvey 56, S. Hasegawa 101, Y. Hasegawa 140, S. Hassani 136, M. Hatch 29, D. Hauff 99, S. Haug 16, M. Hauschild 29, R. Hauser 88, M. Havranek 20, B.M. Hawes 118, C.M. Hawkes 17, R.J. Hawkings 29, D. Hawkins 163, T. Hayakawa 67, T. Hayashi 160, D. Hayden 76, H.S. Hayward 73, S.J. Haywood 129, E. Hazen 21, M. He 32d, S.J. Head 17, V. Hedberg 79, L. Heelan 7, S. Heim 88, B. Heinemann 14, S. Heisterkamp 35, L. Helary 4, S. Hellman 146a,146b, D. Hellmich 20, C. Helsens 11, R.C.W. Henderson 71, M. Henke 58a, A. Henrichs 54, A.M. Henriques Correia 29, S. Henrot-Versille 115, F. Henry-Couannier 83, C. Hensel 54, T. HenЯ 174, C.M. Hernandez 7, Y. Hernбndez Jimйnez 167, R. Herrberg 15, A.D. Hershenhorn 152, G. Herten 48, R. Hertenberger 98, L. Hervas 29, N.P. Hessey 105, A. Hidvegi 146a, E. Higуn-Rodriguez 167, D. Hill 5,, J.C. Hill 27, N. Hill 5, K.H. Hiller 41, S. Hillert 20, S.J. Hillier 17, I. Hinchliffe 14, E. Hines 120, M. Hirose 116, F. Hirsch 42, D. Hirschbuehl 174, J. Hobbs 148, N. Hod 153, M.C. Hodgkinson 139, P. Hodgson 139, A. Hoecker 29, M.R. Hoeferkamp 103, J. Hoffman 39, D. Hoffmann 83, M. Hohlfeld 81, M. Holder 141, S.O. Holmgren 146a, T. Holy 127, J.L. Holzbauer 88, Y. Homma 67, T.M. Hong 120, L. Hooft van Huysduynen 108, T. Horazdovsky 127, C. Horn 143, S. Horner 48, K. Horton 118, J-Y. Hostachy 55, S. Hou 151, M.A. Houlden 73, A. Hoummada 135a, J. Howarth 82, D.F. Howell 118, I. Hristova 15, J. Hrivnac 115, I. Hruska 125, T. Hryn'ova 4, P.J. Hsu 81, S.-C. Hsu 14, G.S. Huang 111, Z. Hubacek 127, F. Hubaut 83, F. Huegging 20, T.B. Huffman 118, E.W. Hughes 34, G. Hughes 71, R.E. Hughes-Jones 82, M. Huhtinen 29, P. Hurst 57, M. Hurwitz 14, U. Husemann 41, N. Huseynov 65,o, J. Huston 88, J. Huth 57, G. Iacobucci 49,
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
529
G. Iakovidis 9, M. Ibbotson 82, I. Ibragimov 141, R. Ichimiya 67, L. Iconomidou-Fayard 115, J. Idarraga 115, P. Iengo 102a,102b, O. Igonkina 105, Y. Ikegami 66, M. Ikeno 66, Y. Ilchenko 39, D. Iliadis 154, D. Imbault 78, M. Imori 155, T. Ince 20, J. Inigo-Golfin 29, P. Ioannou 8, M. Iodice 134a, A. Irles Quiles 167, A. Ishikawa 67, M. Ishino 68, R. Ishmukhametov 39, C. Issever 118, S. Istin 18a, A.V. Ivashin 128, W. Iwanski 38, H. Iwasaki 66, J.M. Izen 40, V. Izzo 102a, B. Jackson 120, J.N. Jackson 73, P. Jackson 143, M.R. Jaekel 29, V. Jain 61, K. Jakobs 48, S. Jakobsen 35, J. Jakubek 127, D.K. Jana 111, E. Jankowski 158, E. Jansen 77, A. Jantsch 99, M. Janus 20, G. Jarlskog 79, L. Jeanty 57, K. Jelen 37, I. Jen-La Plante 30, P. Jenni 29, A. Jeremie 4, P. Jez 35, S. Jйzйquel 4, M.K. Jha 19a, H. Ji 172, W. Ji 81, J. Jia 148, Y. Jiang 32b, M. Jimenez Belenguer 41, G. Jin 32b, S. Jin 32a, O. Jinnouchi 157, M.D. Joergensen 35, D. Joffe 39, L.G. Johansen 13, M. Johansen 146a,146b, K.E. Johansson 146a, P. Johansson 139, S. Johnert 41, K.A. Johns 6, K. Jon-And 146a,146b, G. Jones 82, R.W.L. Jones 71, T.W. Jones 77, T.J. Jones 73, O. Jonsson 29, C. Joram 29, P.M. Jorge 124a,b, J. Joseph 14, T. Jovin 12b, X. Ju 130, C.A. Jung 42, V. Juranek 125, P. Jussel 62, A. Juste Rozas 11, V.V. Kabachenko 128, S. Kabana 16, M. Kaci 167, A. Kaczmarska 38, P. Kadlecik 35, M. Kado 115, H. Kagan 109, M. Kagan 57, S. Kaiser 99, E. Kajomovitz 152, S. Kalinin 174, L.V. Kalinovskaya 65, S. Kama 39, N. Kanaya 155, M. Kaneda 29, T. Kanno 157, V.A. Kantserov 96, J. Kanzaki 66, B. Kaplan 175, A. Kapliy 30, J. Kaplon 29, D. Kar 43, M. Karagoz 118, M. Karnevskiy 41, K. Karr 5, V. Kartvelishvili 71, A.N. Karyukhin 128, L. Kashif 172, G. Kasieczka 58b, A. Kasmi 39, R.D. Kass 109, A. Kastanas 13, M. Kataoka 4, Y. Kataoka 155, E. Katsoufis 9, J. Katzy 41, V. Kaushik 6, K. Kawagoe 67, T. Kawamoto 155, G. Kawamura 81, M.S. Kayl 105, V.A. Kazanin 107, M.Y. Kazarinov 65, J.R. Keates 82, R. Keeler 169, R. Kehoe 39, M. Keil 54, G.D. Kekelidze 65, M. Kelly 82, J. Kennedy 98, C.J. Kenney 143, M. Kenyon 53, O. Kepka 125, N. Kerschen 29, B.P. Kersevan 74, S. Kersten 174, K. Kessoku 155, J. Keung 158, M. Khakzad 28, F. Khalil-zada 10, H. Khandanyan 165, A. Khanov 112, D. Kharchenko 65, A. Khodinov 96, A.G. Kholodenko 128, A. Khomich 58a, T.J. Khoo 27, G. Khoriauli 20, A. Khoroshilov 174, N. Khovanskiy 65, V. Khovanskiy 95, E. Khramov 65, J. Khubua 51b, H. Kim 7, M.S. Kim 2, P.C. Kim 143, S.H. Kim 160, N. Kimura 170, O. Kind 15, B.T. King 73, M. King 67, R.S.B. King 118, J. Kirk 129, L.E. Kirsch 22, A.E. Kiryunin 99, T. Kishimoto 67, D. Kisielewska 37, T. Kittelmann 123, A.M. Kiver 128, E. Kladiva 144b, J. Klaiber-Lodewigs 42, M. Klein 73, U. Klein 73, K. Kleinknecht 81, M. Klemetti 85, A. Klier 171, A. Klimentov 24, R. Klingenberg 42, E.B. Klinkby 35, T. Klioutchnikova 29, P.F. Klok 104, S. Klous 105, E.-E. Kluge 58a, T. Kluge 73, P. Kluit 105, S. Kluth 99, N.S. Knecht 158, E. Kneringer 62, J. Knobloch 29, E.B.F.G. Knoops 83, A. Knue 54, B.R. Ko 44, T. Kobayashi 155, M. Kobel 43, M. Kocian 143, A. Kocnar 113, P. Kodys 126, K. Kцneke 29, A.C. Kцnig 104, S. Koenig 81, L. Kцpke 81, F. Koetsveld 104, P. Koevesarki 20, T. Koffas 28, E. Koffeman 105, F. Kohn 54, Z. Kohout 127, T. Kohriki 66, T. Koi 143, T. Kokott 20, G.M. Kolachev 107, H. Kolanoski 15, V. Kolesnikov 65, I. Koletsou 89a, J. Koll 88, D. Kollar 29, M. Kollefrath 48, S.D. Kolya 82, A.A. Komar 94, Y. Komori 155, T. Kondo 66, T. Kono 41,p, A.I. Kononov 48, R. Konoplich 108,q, N. Konstantinidis 77, A. Kootz 174, S. Koperny 37, S.V. Kopikov 128, K. Korcyl 38, K. Kordas 154, V. Koreshev 128, A. Korn 118, A. Korol 107, I. Korolkov 11, E.V. Korolkova 139, V.A. Korotkov 128, O. Kortner 99, S. Kortner 99, V.V. Kostyukhin 20, M.J. Kotamдki 29, S. Kotov 99, V.M. Kotov 65, A. Kotwal 44, C. Kourkoumelis 8, V. Kouskoura 154, A. Koutsman 105, R. Kowalewski 169, T.Z. Kowalski 37, W. Kozanecki 136, A.S. Kozhin 128, V. Kral 127, V.A. Kramarenko 97, G. Kramberger 74, M.W. Krasny 78, A. Krasznahorkay 108, J. Kraus 88, J.K. Kraus 20, A. Kreisel 153, F. Krejci 127, J. Kretzschmar 73, N. Krieger 54, P. Krieger 158, K. Kroeninger 54, H. Kroha 99, J. Kroll 120, J. Kroseberg 20, J. Krstic 12a, U. Kruchonak 65, H. Krьger 20, T. Kruker 16, Z.V. Krumshteyn 65, A. Kruth 20, T. Kubota 86, S. Kuehn 48, A. Kugel 58c, T. Kuhl 41, D. Kuhn 62, V. Kukhtin 65, Y. Kulchitsky 90, S. Kuleshov 31b, C. Kummer 98, M. Kuna 78, N. Kundu 118, J. Kunkle 120, A. Kupco 125, H. Kurashige 67, M. Kurata 160, Y.A. Kurochkin 90, V. Kus 125, M. Kuze 157, J. Kvita 29, R. Kwee 15, A. La Rosa 172, L. La Rotonda 36a,36b, L. Labarga 80, J. Labbe 4, S. Lablak 135a, C. Lacasta 167, F. Lacava 132a,132b, H. Lacker 15, D. Lacour 78, V.R. Lacuesta 167, E. Ladygin 65, R. Lafaye 4, B. Laforge 78, T. Lagouri 80, S. Lai 48, E. Laisne 55, M. Lamanna 29, C.L. Lampen 6, W. Lampl 6, E. Lancon 136, U. Landgraf 48, M.P.J. Landon 75, H. Landsman 152, J.L. Lane 82, C. Lange 41, A.J. Lankford 163, F. Lanni 24, K. Lantzsch 174, S. Laplace 78, C. Lapoire 20, J.F. Laporte 136, T. Lari 89a, A.V. Larionov 128, A. Larner 118, C. Lasseur 29, M. Lassnig 29, P. Laurelli 47, W. Lavrijsen 14, P. Laycock 73, A.B. Lazarev 65, O. Le Dortz 78, E. Le Guirriec 83, C. Le Maner 158, E. Le Menedeu 136, C. Lebel 93, T. LeCompte 5, F. Ledroit-Guillon 55, H. Lee 105, J.S.H. Lee 116, S.C. Lee 151, L. Lee 175, M. Lefebvre 169, M. Legendre 136, A. Leger 49, B.C. LeGeyt 120, F. Legger 98, C. Leggett 14, M. Lehmacher 20, G. Lehmann Miotto 29, X. Lei 6,
530
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
M.A.L. Leite 23d, R. Leitner 126, D. Lellouch 171, M. Leltchouk 34, B. Lemmer 54, V. Lendermann 58a, K.J.C. Leney 145b, T. Lenz 105, G. Lenzen 174, B. Lenzi 29, K. Leonhardt 43, S. Leontsinis 9, C. Leroy 93, J-R. Lessard 169, J. Lesser 146a, C.G. Lester 27, A. Leung Fook Cheong 172, J. Levкque 4, D. Levin 87, L.J. Levinson 171, M.S. Levitski 128, A. Lewis 118, G.H. Lewis 108, A.M. Leyko 20, M. Leyton 15, B. Li 83, H. Li 172, S. Li 32b,d, X. Li 87, Z. Liang 39, Z. Liang 118,r, H. Liao 33, B. Liberti 133a, P. Lichard 29, M. Lichtnecker 98, K. Lie 165, W. Liebig 13, R. Lifshitz 152, J.N. Lilley 17, C. Limbach 20, A. Limosani 86, M. Limper 63, S.C. Lin 151,s, F. Linde 105, J.T. Linnemann 88, E. Lipeles 120, L. Lipinsky 125, A. Lipniacka 13, T.M. Liss 165, D. Lissauer 24, A. Lister 49, A.M. Litke 137, C. Liu 28, D. Liu 151,t, H. Liu 87, J.B. Liu 87, M. Liu 32b, S. Liu 2, Y. Liu 32b, M. Livan 119a,119b, S.S.A. Livermore 118, A. Lleres 55, J. Llorente Merino 80, S.L. Lloyd 75, E. Lobodzinska 41, P. Loch 6, W.S. Lockman 137, T. Loddenkoetter 20, F.K. Loebinger 82, A. Loginov 175, C.W. Loh 168, T. Lohse 15, K. Lohwasser 48, M. Lokajicek 125, J. Loken 118, V.P. Lombardo 4, R.E. Long 71, L. Lopes 124a,b, D. Lopez Mateos 57, M. Losada 162, P. Loscutoff 14, F. Lo Sterzo 132a,132b, M.J. Losty 159a, X. Lou 40, A. Lounis 115, K.F. Loureiro 162, J. Love 21, P.A. Love 71, A.J. Lowe 143,f , F. Lu 32a, H.J. Lubatti 138, C. Luci 132a,132b, A. Lucotte 55, A. Ludwig 43, D. Ludwig 41, I. Ludwig 48, J. Ludwig 48, F. Luehring 61, G. Luijckx 105, D. Lumb 48, L. Luminari 132a, E. Lund 117, B. Lund-Jensen 147, B. Lundberg 79, J. Lundberg 146a,146b, J. Lundquist 35, M. Lungwitz 81, A. Lupi 122a,122b, G. Lutz 99, D. Lynn 24, J. Lys 14, E. Lytken 79, H. Ma 24, L.L. Ma 172, J.A. Macana Goia 93, G. Maccarrone 47, A. Macchiolo 99, B. Macek 74, J. Machado Miguens 124a, R. Mackeprang 35, R.J. Madaras 14, W.F. Mader 43, R. Maenner 58c, T. Maeno 24, P. Mдttig 174, S. Mдttig 41, L. Magnoni 29, E. Magradze 54, Y. Mahalalel 153, K. Mahboubi 48, G. Mahout 17, C. Maiani 132a,132b, C. Maidantchik 23a, A. Maio 124a,b, S. Majewski 24, Y. Makida 66, N. Makovec 115, P. Mal 136, Pa. Malecki 38, P. Malecki 38, V.P. Maleev 121, F. Malek 55, U. Mallik 63, D. Malon 5, C. Malone 143, S. Maltezos 9, V. Malyshev 107, S. Malyukov 29, R. Mameghani 98, J. Mamuzic 12b, A. Manabe 66, L. Mandelli 89a, I. Mandicґ 74, R. Mandrysch 15, J. Maneira 124a, P.S. Mangeard 88, I.D. Manjavidze 65, A. Mann 54, P.M. Manning 137, A. Manousakis-Katsikakis 8, B. Mansoulie 136, A. Manz 99, A. Mapelli 29, L. Mapelli 29, L. March 80, J.F. Marchand 29, F. Marchese 133a,133b, G. Marchiori 78, M. Marcisovsky 125, A. Marin 21,, C.P. Marino 169, F. Marroquim 23a, R. Marshall 82, Z. Marshall 29, F.K. Martens 158, S. Marti-Garcia 167, A.J. Martin 175, B. Martin 29, B. Martin 88, F.F. Martin 120, J.P. Martin 93, Ph. Martin 55, T.A. Martin 17, V.J. Martin 45, B. Martin dit Latour 49, S. Martin-Haugh 149, M. Martinez 11, V. Martinez Outschoorn 57, A.C. Martyniuk 82, M. Marx 82, F. Marzano 132a, A. Marzin 111, L. Masetti 81, T. Mashimo 155, R. Mashinistov 94, J. Masik 82, A.L. Maslennikov 107, I. Massa 19a,19b, G. Massaro 105, N. Massol 4, P. Mastrandrea 132a,132b, A. Mastroberardino 36a,36b, T. Masubuchi 155, M. Mathes 20, P. Matricon 115, H. Matsumoto 155, H. Matsunaga 155, T. Matsushita 67, C. Mattravers 118,c, J.M. Maugain 29, S.J. Maxfield 73, D.A. Maximov 107, E.N. May 5, A. Mayne 139, R. Mazini 151, M. Mazur 20, M. Mazzanti 89a, E. Mazzoni 122a,122b, S.P. Mc Kee 87, A. McCarn 165, R.L. McCarthy 148, T.G. McCarthy 28, N.A. McCubbin 129, K.W. McFarlane 56, J.A. Mcfayden 139, H. McGlone 53, G. Mchedlidze 51b, R.A. McLaren 29, T. Mclaughlan 17, S.J. McMahon 129, R.A. McPherson 169,j, A. Meade 84, J. Mechnich 105, M. Mechtel 174, M. Medinnis 41, R. Meera-Lebbai 111, T. Meguro 116, R. Mehdiyev 93, S. Mehlhase 35, A. Mehta 73, K. Meier 58a, J. Meinhardt 48, B. Meirose 79, C. Melachrinos 30, B.R. Mellado Garcia 172, L. Mendoza Navas 162, Z. Meng 151,t, A. Mengarelli 19a,19b, S. Menke 99, C. Menot 29, E. Meoni 11, K.M. Mercurio 57, P. Mermod 118, L. Merola 102a,102b, C. Meroni 89a, F.S. Merritt 30, A. Messina 29, J. Metcalfe 103, A.S. Mete 64, C. Meyer 81, J-P. Meyer 136, J. Meyer 173, J. Meyer 54, T.C. Meyer 29, W.T. Meyer 64, J. Miao 32d, S. Michal 29, L. Micu 25a, R.P. Middleton 129, P. Miele 29, S. Migas 73, L. Mijovicґ 41, G. Mikenberg 171, M. Mikestikova 125, M. Mikuz 74, D.W. Miller 30, R.J. Miller 88, W.J. Mills 168, C. Mills 57, A. Milov 171, D.A. Milstead 146a,146b, D. Milstein 171, A.A. Minaenko 128, M. Miсano 167, I.A. Minashvili 65, A.I. Mincer 108, B. Mindur 37, M. Mineev 65, Y. Ming 130, L.M. Mir 11, G. Mirabelli 132a, L. Miralles Verge 11, A. Misiejuk 76, J. Mitrevski 137, G.Y. Mitrofanov 128, V.A. Mitsou 167, S. Mitsui 66, P.S. Miyagawa 139, K. Miyazaki 67, J.U. Mjцrnmark 79, T. Moa 146a,146b, P. Mockett 138, S. Moed 57, V. Moeller 27, K. Mцnig 41, N. Mцser 20, S. Mohapatra 148, W. Mohr 48, S. Mohrdieck-Mцck 99, A.M. Moisseev 128,, R. Moles-Valls 167, J. Molina-Perez 29, J. Monk 77, E. Monnier 83, S. Montesano 89a,89b, F. Monticelli 70, S. Monzani 19a,19b, R.W. Moore 2, G.F. Moorhead 86, C. Mora Herrera 49, A. Moraes 53, N. Morange 136, J. Morel 54, G. Morello 36a,36b, D. Moreno 81, M. Moreno Llбcer 167, P. Morettini 50a, M. Morii 57, J. Morin 75, A.K. Morley 29, G. Mornacchi 29, S.V. Morozov 96, J.D. Morris 75, L. Morvaj 101, H.G. Moser 99, M. Mosidze 51b, J. Moss 109, R. Mount 143,
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
531
E. Mountricha 136, S.V. Mouraviev 94, E.J.W. Moyse 84, M. Mudrinic 12b, F. Mueller 58a, J. Mueller 123, K. Mueller 20, T.A. Mьller 98, D. Muenstermann 29, A. Muir 168, Y. Munwes 153, W.J. Murray 129, I. Mussche 105, E. Musto 102a,102b, A.G. Myagkov 128, M. Myska 125, J. Nadal 11, K. Nagai 160, K. Nagano 66, Y. Nagasaka 60, A.M. Nairz 29, Y. Nakahama 29, K. Nakamura 155, T. Nakamura 155, I. Nakano 110, G. Nanava 20, A. Napier 161, M. Nash 77,c, N.R. Nation 21, T. Nattermann 20, T. Naumann 41, G. Navarro 162, H.A. Neal 87, E. Nebot 80, P.Yu. Nechaeva 94, A. Negri 119a,119b, G. Negri 29, S. Nektarijevic 49, A. Nelson 163, S. Nelson 143, T.K. Nelson 143, S. Nemecek 125, P. Nemethy 108, A.A. Nepomuceno 23a, M. Nessi 29,u, S.Y. Nesterov 121, M.S. Neubauer 165, A. Neusiedl 81, R.M. Neves 108, P. Nevski 24, P.R. Newman 17, V. Nguyen Thi Hong 136, R.B. Nickerson 118, R. Nicolaidou 136, L. Nicolas 139, B. Nicquevert 29, F. Niedercorn 115, J. Nielsen 137, T. Niinikoski 29, N. Nikiforou 34, A. Nikiforov 15, V. Nikolaenko 128, K. Nikolaev 65, I. Nikolic-Audit 78, K. Nikolics 49, K. Nikolopoulos 24, H. Nilsen 48, P. Nilsson 7, Y. Ninomiya 155, A. Nisati 132a, T. Nishiyama 67, R. Nisius 99, L. Nodulman 5, M. Nomachi 116, I. Nomidis 154, M. Nordberg 29, B. Nordkvist 146a,146b, P.R. Norton 129, J. Novakova 126, M. Nozaki 66, L. Nozka 113, I.M. Nugent 159a, A.-E. Nuncio-Quiroz 20, G. Nunes Hanninger 86, T. Nunnemann 98, E. Nurse 77, T. Nyman 29, B.J. O'Brien 45, S.W. O'Neale 17,, D.C. O'Neil 142, V. O'Shea 53, F.G. Oakham 28,e, H. Oberlack 99, J. Ocariz 78, A. Ochi 67, S. Oda 155, S. Odaka 66, J. Odier 83, H. Ogren 61, A. Oh 82, S.H. Oh 44, C.C. Ohm 146a,146b, T. Ohshima 101, H. Ohshita 140, T. Ohsugi 59, S. Okada 67, H. Okawa 163, Y. Okumura 101, T. Okuyama 155, M. Olcese 50a, A.G. Olchevski 65, M. Oliveira 124a,h, D. Oliveira Damazio 24, E. Oliver Garcia 167, D. Olivito 120, A. Olszewski 38, J. Olszowska 38, C. Omachi 67, A. Onofre 124a,v, P.U.E. Onyisi 30, C.J. Oram 159a, M.J. Oreglia 30, Y. Oren 153, D. Orestano 134a,134b, I. Orlov 107, C. Oropeza Barrera 53, R.S. Orr 158, B. Osculati 50a,50b, R. Ospanov 120, C. Osuna 11, G. Otero y Garzon 26, J.P. Ottersbach 105, M. Ouchrif 135d, F. Ould-Saada 117, A. Ouraou 136, Q. Ouyang 32a, M. Owen 82, S. Owen 139, V.E. Ozcan 18a, N. Ozturk 7, A. Pacheco Pages 11, C. Padilla Aranda 11, S. Pagan Griso 14, E. Paganis 139, F. Paige 24, K. Pajchel 117, G. Palacino 159b, C.P. Paleari 6, S. Palestini 29, D. Pallin 33, A. Palma 124a,b, J.D. Palmer 17, Y.B. Pan 172, E. Panagiotopoulou 9, B. Panes 31a, N. Panikashvili 87, S. Panitkin 24, D. Pantea 25a, M. Panuskova 125, V. Paolone 123, A. Papadelis 146a, Th.D. Papadopoulou 9, A. Paramonov 5, W. Park 24,w, M.A. Parker 27, F. Parodi 50a,50b, J.A. Parsons 34, U. Parzefall 48, E. Pasqualucci 132a, A. Passeri 134a, F. Pastore 134a,134b, Fr. Pastore 76, G. Pбsztor 49,x, S. Pataraia 174, N. Patel 150, J.R. Pater 82, S. Patricelli 102a,102b, T. Pauly 29, M. Pecsy 144a, M.I. Pedraza Morales 172, S.V. Peleganchuk 107, H. Peng 32b, R. Pengo 29, A. Penson 34, J. Penwell 61, M. Perantoni 23a, K. Perez 34,y, T. Perez Cavalcanti 41, E. Perez Codina 11, M.T. Pйrez Garcнa-Estaс 167, V. Perez Reale 34, L. Perini 89a,89b, H. Pernegger 29, R. Perrino 72a, P. Perrodo 4, S. Persembe 3a, V.D. Peshekhonov 65, B.A. Petersen 29, J. Petersen 29, T.C. Petersen 35, E. Petit 83, A. Petridis 154, C. Petridou 154, E. Petrolo 132a, F. Petrucci 134a,134b, D. Petschull 41, M. Petteni 142, R. Pezoa 31b, A. Phan 86, A.W. Phillips 27, P.W. Phillips 129, G. Piacquadio 29, E. Piccaro 75, M. Piccinini 19a,19b, S.M. Piec 41, R. Piegaia 26, J.E. Pilcher 30, A.D. Pilkington 82, J. Pina 124a,b, M. Pinamonti 164a,164c, A. Pinder 118, J.L. Pinfold 2, J. Ping 32c, B. Pinto 124a,b, O. Pirotte 29, C. Pizio 89a,89b, R. Placakyte 41, M. Plamondon 169, M.-A. Pleier 24, A.V. Pleskach 128, A. Poblaguev 24, S. Poddar 58a, F. Podlyski 33, L. Poggioli 115, T. Poghosyan 20, M. Pohl 49, F. Polci 55, G. Polesello 119a, A. Policicchio 138, A. Polini 19a, J. Poll 75, V. Polychronakos 24, D.M. Pomarede 136, D. Pomeroy 22, K. Pommиs 29, L. Pontecorvo 132a, B.G. Pope 88, G.A. Popeneciu 25a, D.S. Popovic 12a, A. Poppleton 29, X. Portell Bueso 29, C. Posch 21, G.E. Pospelov 99, S. Pospisil 127, I.N. Potrap 99, C.J. Potter 149, C.T. Potter 114, G. Poulard 29, J. Poveda 172, R. Prabhu 77, P. Pralavorio 83, S. Prasad 57, R. Pravahan 7, S. Prell 64, K. Pretzl 16, L. Pribyl 29, D. Price 61, L.E. Price 5, M.J. Price 29, P.M. Prichard 73, D. Prieur 123, M. Primavera 72a, K. Prokofiev 108, F. Prokoshin 31b, S. Protopopescu 24, J. Proudfoot 5, X. Prudent 43, H. Przysiezniak 4, S. Psoroulas 20, E. Ptacek 114, E. Pueschel 84, J. Purdham 87, M. Purohit 24,w, P. Puzo 115, Y. Pylypchenko 117, J. Qian 87, Z. Qian 83, Z. Qin 41, A. Quadt 54, D.R. Quarrie 14, W.B. Quayle 172, F. Quinonez 31a, M. Raas 104, V. Radescu 58b, B. Radics 20, T. Rador 18a, F. Ragusa 89a,89b, G. Rahal 177, A.M. Rahimi 109, D. Rahm 24, S. Rajagopalan 24, M. Rammensee 48, M. Rammes 141, M. Ramstedt 146a,146b, A.S. Randle-Conde 39, K. Randrianarivony 28, P.N. Ratoff 71, F. Rauscher 98, E. Rauter 99, M. Raymond 29, A.L. Read 117, D.M. Rebuzzi 119a,119b, A. Redelbach 173, G. Redlinger 24, R. Reece 120, K. Reeves 40, A. Reichold 105, E. Reinherz-Aronis 153, A. Reinsch 114, I. Reisinger 42, D. Reljic 12a, C. Rembser 29, Z.L. Ren 151, A. Renaud 115, P. Renkel 39, M. Rescigno 132a, S. Resconi 89a, B. Resende 136, P. Reznicek 98, R. Rezvani 158,
532
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
A. Richards 77, R. Richter 99, E. Richter-Was 4,z, M. Ridel 78, M. Rijpstra 105, M. Rijssenbeek 148, A. Rimoldi 119a,119b, L. Rinaldi 19a, R.R. Rios 39, I. Riu 11, G. Rivoltella 89a,89b, F. Rizatdinova 112, E. Rizvi 75, S.H. Robertson 85,j, A. Robichaud-Veronneau 118, D. Robinson 27, J.E.M. Robinson 77, M. Robinson 114, A. Robson 53, J.G. Rocha de Lima 106, C. Roda 122a,122b, D. Roda Dos Santos 29, S. Rodier 80, D. Rodriguez 162, A. Roe 54, S. Roe 29, O. Rшhne 117, V. Rojo 1, S. Rolli 161, A. Romaniouk 96, M. Romano 19a,19b, V.M. Romanov 65, G. Romeo 26, L. Roos 78, E. Ros 167, S. Rosati 132a,132b, K. Rosbach 49, A. Rose 149, M. Rose 76, G.A. Rosenbaum 158, E.I. Rosenberg 64, P.L. Rosendahl 13, O. Rosenthal 141, L. Rosselet 49, V. Rossetti 11, E. Rossi 132a,132b, L.P. Rossi 50a, M. Rotaru 25a, I. Roth 171, J. Rothberg 138, D. Rousseau 115, C.R. Royon 136, A. Rozanov 83, Y. Rozen 152, X. Ruan 115, I. Rubinskiy 41, B. Ruckert 98, N. Ruckstuhl 105, V.I. Rud 97, C. Rudolph 43, G. Rudolph 62, F. Rьhr 6, F. Ruggieri 134a,134b, A. Ruiz-Martinez 64, V. Rumiantsev 91,, L. Rumyantsev 65, K. Runge 48, O. Runolfsson 20, Z. Rurikova 48, N.A. Rusakovich 65, D.R. Rust 61, J.P. Rutherfoord 6, C. Ruwiedel 14, P. Ruzicka 125, Y.F. Ryabov 121, V. Ryadovikov 128, P. Ryan 88, M. Rybar 126, G. Rybkin 115, N.C. Ryder 118, S. Rzaeva 10, A.F. Saavedra 150, I. Sadeh 153, H.F-W. Sadrozinski 137, R. Sadykov 65, F. Safai Tehrani 132a,132b, H. Sakamoto 155, G. Salamanna 75, A. Salamon 133a, M. Saleem 111, D. Salihagic 99, A. Salnikov 143, J. Salt 167, B.M. Salvachua Ferrando 5, D. Salvatore 36a,36b, F. Salvatore 149, A. Salvucci 104, A. Salzburger 29, D. Sampsonidis 154, B.H. Samset 117, A. Sanchez 102a,102b, H. Sandaker 13, H.G. Sander 81, M.P. Sanders 98, M. Sandhoff 174, T. Sandoval 27, C. Sandoval 162, R. Sandstroem 99, S. Sandvoss 174, D.P.C. Sankey 129, A. Sansoni 47, C. Santamarina Rios 85, C. Santoni 33, R. Santonico 133a,133b, H. Santos 124a, J.G. Saraiva 124a,b, T. Sarangi 172, E. Sarkisyan-Grinbaum 7, F. Sarri 122a,122b, G. Sartisohn 174, O. Sasaki 66, T. Sasaki 66, N. Sasao 68, I. Satsounkevitch 90, G. Sauvage 4, E. Sauvan 4, J.B. Sauvan 115, P. Savard 158,e, V. Savinov 123, D.O. Savu 29, L. Sawyer 24,l, D.H. Saxon 53, L.P. Says 33, C. Sbarra 19a,19b, A. Sbrizzi 19a,19b, O. Scallon 93, D.A. Scannicchio 163, J. Schaarschmidt 115, P. Schacht 99, U. Schдfer 81, S. Schaepe 20, S. Schaetzel 58b, A.C. Schaffer 115, D. Schaile 98, R.D. Schamberger 148, A.G. Schamov 107, V. Scharf 58a, V.A. Schegelsky 121, D. Scheirich 87, M. Schernau 163, M.I. Scherzer 14, C. Schiavi 50a,50b, J. Schieck 98, M. Schioppa 36a,36b, S. Schlenker 29, J.L. Schlereth 5, E. Schmidt 48, K. Schmieden 20, C. Schmitt 81, S. Schmitt 58b, M. Schmitz 20, A. Schцning 58b, M. Schott 29, D. Schouten 159a, J. Schovancova 125, M. Schram 85, C. Schroeder 81, N. Schroer 58c, S. Schuh 29, G. Schuler 29, J. Schultes 174, H.-C. Schultz-Coulon 58a, H. Schulz 15, J.W. Schumacher 20, M. Schumacher 48, B.A. Schumm 137, Ph. Schune 136, C. Schwanenberger 82, A. Schwartzman 143, Ph. Schwemling 78, R. Schwienhorst 88, R. Schwierz 43, J. Schwindling 136, T. Schwindt 20, W.G. Scott 129, J. Searcy 114, G. Sedov 41, E. Sedykh 121, E. Segura 11, S.C. Seidel 103, A. Seiden 137, F. Seifert 43, J.M. Seixas 23a, G. Sekhniaidze 102a, D.M. Seliverstov 121, B. Sellden 146a, G. Sellers 73, M. Seman 144b, N. Semprini-Cesari 19a,19b, C. Serfon 98, L. Serin 115, R. Seuster 99, H. Severini 111, M.E. Sevior 86, A. Sfyrla 29, E. Shabalina 54, M. Shamim 114, L.Y. Shan 32a, J.T. Shank 21, Q.T. Shao 86, M. Shapiro 14, P.B. Shatalov 95, L. Shaver 6, K. Shaw 164a,164c, D. Sherman 175, P. Sherwood 77, A. Shibata 108, H. Shichi 101, S. Shimizu 29, M. Shimojima 100, T. Shin 56, A. Shmeleva 94, M.J. Shochet 30, D. Short 118, M.A. Shupe 6, P. Sicho 125, A. Sidoti 132a,132b, A. Siebel 174, F. Siegert 48, Dj. Sijacki 12a, O. Silbert 171, J. Silva 124a,b, Y. Silver 153, D. Silverstein 143, S.B. Silverstein 146a, V. Simak 127, O. Simard 136, Lj. Simic 12a, S. Simion 115, B. Simmons 77, M. Simonyan 35, P. Sinervo 158, N.B. Sinev 114, V. Sipica 141, G. Siragusa 173, A. Sircar 24, A.N. Sisakyan 65, S.Yu. Sivoklokov 97, J. Sjцlin 146a,146b, T.B. Sjursen 13, L.A. Skinnari 14, H.P. Skottowe 57, K. Skovpen 107, P. Skubic 111, N. Skvorodnev 22, M. Slater 17, T. Slavicek 127, K. Sliwa 161, J. Sloper 29, V. Smakhtin 171, S.Yu. Smirnov 96, L.N. Smirnova 97, O. Smirnova 79, B.C. Smith 57, D. Smith 143, K.M. Smith 53, M. Smizanska 71, K. Smolek 127, A.A. Snesarev 94, S.W. Snow 82, J. Snow 111, J. Snuverink 105, S. Snyder 24, M. Soares 124a, R. Sobie 169,j, J. Sodomka 127, A. Soffer 153, C.A. Solans 167, M. Solar 127, J. Solc 127, E. Soldatov 96, U. Soldevila 167, E. Solfaroli Camillocci 132a,132b, A.A. Solodkov 128, O.V. Solovyanov 128, J. Sondericker 24, N. Soni 2, V. Sopko 127, B. Sopko 127, M. Sosebee 7, R. Soualah 164a,164c, A. Soukharev 107, S. Spagnolo 72a,72b, F. Spanт 76, R. Spighi 19a, G. Spigo 29, F. Spila 132a,132b, E. Spiriti 134a, R. Spiwoks 29, M. Spousta 126, T. Spreitzer 158, B. Spurlock 7, R.D. St. Denis 53, T. Stahl 141, J. Stahlman 120, R. Stamen 58a, E. Stanecka 29, R.W. Stanek 5, C. Stanescu 134a, S. Stapnes 117, E.A. Starchenko 128, J. Stark 55, P. Staroba 125, P. Starovoitov 91, A. Staude 98, P. Stavina 144a, G. Stavropoulos 14, G. Steele 53, P. Steinbach 43, P. Steinberg 24, I. Stekl 127, B. Stelzer 142, H.J. Stelzer 88, O. Stelzer-Chilton 159a, H. Stenzel 52, K. Stevenson 75, G.A. Stewart 29, J.A. Stillings 20, T. Stockmanns 20,
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
533
M.C. Stockton 29, K. Stoerig 48, G. Stoicea 25a, S. Stonjek 99, P. Strachota 126, A.R. Stradling 7, A. Straessner 43, J. Strandberg 147, S. Strandberg 146a,146b, A. Strandlie 117, M. Strang 109, E. Strauss 143, M. Strauss 111, P. Strizenec 144b, R. Strцhmer 173, D.M. Strom 114, J.A. Strong 76,, R. Stroynowski 39, J. Strube 129, B. Stugu 13, I. Stumer 24,, J. Stupak 148, P. Sturm 174, D.A. Soh 151,r, D. Su 143, HS. Subramania 2, A. Succurro 11, Y. Sugaya 116, T. Sugimoto 101, C. Suhr 106, K. Suita 67, M. Suk 126, V.V. Sulin 94, S. Sultansoy 3d, T. Sumida 29, X. Sun 55, J.E. Sundermann 48, K. Suruliz 139, S. Sushkov 11, G. Susinno 36a,36b, M.R. Sutton 149, Y. Suzuki 66, Y. Suzuki 67, M. Svatos 125, Yu.M. Sviridov 128, S. Swedish 168, I. Sykora 144a, T. Sykora 126, B. Szeless 29, J. Sбnchez 167, D. Ta 105, K. Tackmann 41, A. Taffard 163, R. Tafirout 159a, N. Taiblum 153, Y. Takahashi 101, H. Takai 24, R. Takashima 69, H. Takeda 67, T. Takeshita 140, M. Talby 83, A. Talyshev 107, M.C. Tamsett 24, J. Tanaka 155, R. Tanaka 115, S. Tanaka 131, S. Tanaka 66, Y. Tanaka 100, K. Tani 67, N. Tannoury 83, G.P. Tappern 29, S. Tapprogge 81, D. Tardif 158, S. Tarem 152, F. Tarrade 28, G.F. Tartarelli 89a, P. Tas 126, M. Tasevsky 125, E. Tassi 36a,36b, M. Tatarkhanov 14, Y. Tayalati 135d, C. Taylor 77, F.E. Taylor 92, G.N. Taylor 86, W. Taylor 159b, M. Teinturier 115, M. Teixeira Dias Castanheira 75, P. Teixeira-Dias 76, K.K. Temming 48, H. Ten Kate 29, P.K. Teng 151, S. Terada 66, K. Terashi 155, J. Terron 80, M. Terwort 41,p, M. Testa 47, R.J. Teuscher 158,j, J. Thadome 174, J. Therhaag 20, T. Theveneaux-Pelzer 78, M. Thioye 175, S. Thoma 48, J.P. Thomas 17, E.N. Thompson 34, P.D. Thompson 17, P.D. Thompson 158, A.S. Thompson 53, E. Thomson 120, M. Thomson 27, R.P. Thun 87, F. Tian 34, T. Tic 125, V.O. Tikhomirov 94, Y.A. Tikhonov 107, C.J.W.P. Timmermans 104, P. Tipton 175, F.J. Tique Aires Viegas 29, S. Tisserant 83, J. Tobias 48, B. Toczek 37, T. Todorov 4, S. Todorova-Nova 161, B. Toggerson 163, J. Tojo 66, S. Tokбr 144a, K. Tokunaga 67, K. Tokushuku 66, K. Tollefson 88, M. Tomoto 101, L. Tompkins 14, K. Toms 103, G. Tong 32a, A. Tonoyan 13, C. Topfel 16, N.D. Topilin 65, I. Torchiani 29, E. Torrence 114, H. Torres 78, E. Torrу Pastor 167, J. Toth 83,x, F. Touchard 83, D.R. Tovey 139, D. Traynor 75, T. Trefzger 173, L. Tremblet 29, A. Tricoli 29, I.M. Trigger 159a, S. Trincaz-Duvoid 78, T.N. Trinh 78, M.F. Tripiana 70, W. Trischuk 158, A. Trivedi 24,w, B. Trocmй 55, C. Troncon 89a, M. Trottier-McDonald 142, A. Trzupek 38, C. Tsarouchas 29, J.C-L. Tseng 118, M. Tsiakiris 105, P.V. Tsiareshka 90, D. Tsionou 4, G. Tsipolitis 9, V. Tsiskaridze 48, E.G. Tskhadadze 51a, I.I. Tsukerman 95, V. Tsulaia 14, J.-W. Tsung 20, S. Tsuno 66, D. Tsybychev 148, A. Tua 139, A. Tudorache 25a, V. Tudorache 25a, J.M. Tuggle 30, M. Turala 38, D. Turecek 127, I. Turk Cakir 3e, E. Turlay 105, R. Turra 89a,89b, P.M. Tuts 34, A. Tykhonov 74, M. Tylmad 146a,146b, M. Tyndel 129, H. Tyrvainen 29, G. Tzanakos 8, K. Uchida 20, I. Ueda 155, R. Ueno 28, M. Ugland 13, M. Uhlenbrock 20, M. Uhrmacher 54, F. Ukegawa 160, G. Unal 29, D.G. Underwood 5, A. Undrus 24, G. Unel 163, Y. Unno 66, D. Urbaniec 34, E. Urkovsky 153, P. Urrejola 31a, G. Usai 7, M. Uslenghi 119a,119b, L. Vacavant 83, V. Vacek 127, B. Vachon 85, S. Vahsen 14, J. Valenta 125, P. Valente 132a, S. Valentinetti 19a,19b, S. Valkar 126, E. Valladolid Gallego 167, S. Vallecorsa 152, J.A. Valls Ferrer 167, H. van der Graaf 105, E. van der Kraaij 105, R. Van Der Leeuw 105, E. van der Poel 105, D. van der Ster 29, N. van Eldik 84, P. van Gemmeren 5, Z. van Kesteren 105, I. van Vulpen 105, M. Vanadia 99, W. Vandelli 29, G. Vandoni 29, A. Vaniachine 5, P. Vankov 41, F. Vannucci 78, F. Varela Rodriguez 29, R. Vari 132a, D. Varouchas 14, A. Vartapetian 7, K.E. Varvell 150, V.I. Vassilakopoulos 56, F. Vazeille 33, G. Vegni 89a,89b, J.J. Veillet 115, C. Vellidis 8, F. Veloso 124a, R. Veness 29, S. Veneziano 132a, A. Ventura 72a,72b, D. Ventura 138, M. Venturi 48, N. Venturi 16, V. Vercesi 119a, M. Verducci 138, W. Verkerke 105, J.C. Vermeulen 105, A. Vest 43, M.C. Vetterli 142,e, I. Vichou 165, T. Vickey 145b,aa, O.E. Vickey Boeriu 145b, G.H.A. Viehhauser 118, S. Viel 168, M. Villa 19a,19b, M. Villaplana Perez 167, E. Vilucchi 47, M.G. Vincter 28, E. Vinek 29, V.B. Vinogradov 65, M. Virchaux 136,, J. Virzi 14, O. Vitells 171, M. Viti 41, I. Vivarelli 48, F. Vives Vaque 2, S. Vlachos 9, D. Vladoiu 98, M. Vlasak 127, N. Vlasov 20, A. Vogel 20, P. Vokac 127, G. Volpi 47, M. Volpi 86, G. Volpini 89a, H. von der Schmitt 99, J. von Loeben 99, H. von Radziewski 48, E. von Toerne 20, V. Vorobel 126, A.P. Vorobiev 128, V. Vorwerk 11, M. Vos 167, R. Voss 29, T.T. Voss 174, J.H. Vossebeld 73, N. Vranjes 12a, M. Vranjes Milosavljevic 105, V. Vrba 125, M. Vreeswijk 105, T. Vu Anh 81, R. Vuillermet 29, I. Vukotic 115, W. Wagner 174, P. Wagner 120, H. Wahlen 174, J. Wakabayashi 101, J. Walbersloh 42, S. Walch 87, J. Walder 71, R. Walker 98, W. Walkowiak 141, R. Wall 175, P. Waller 73, C. Wang 44, H. Wang 172, H. Wang 32b,ab, J. Wang 151, J. Wang 32d, J.C. Wang 138, R. Wang 103, S.M. Wang 151, A. Warburton 85, C.P. Ward 27, M. Warsinsky 48, P.M. Watkins 17, A.T. Watson 17, M.F. Watson 17, G. Watts 138, S. Watts 82, A.T. Waugh 150, B.M. Waugh 77, J. Weber 42, M. Weber 129, M.S. Weber 16, P. Weber 54, A.R. Weidberg 118, P. Weigell 99, J. Weingarten 54, C. Weiser 48, H. Wellenstein 22, P.S. Wells 29, M. Wen 47, T. Wenaus 24,
534
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
S. Wendler 123, Z. Weng 151,r, T. Wengler 29, S. Wenig 29, N. Wermes 20, M. Werner 48, P. Werner 29, M. Werth 163, M. Wessels 58a, C. Weydert 55, K. Whalen 28, S.J. Wheeler-Ellis 163, S.P. Whitaker 21, A. White 7, M.J. White 86, S.R. Whitehead 118, D. Whiteson 163, D. Whittington 61, F. Wicek 115, D. Wicke 174, F.J. Wickens 129, W. Wiedenmann 172, M. Wielers 129, P. Wienemann 20, C. Wiglesworth 75, L.A.M. Wiik 48, P.A. Wijeratne 77, A. Wildauer 167, M.A. Wildt 41,p, I. Wilhelm 126, H.G. Wilkens 29, J.Z. Will 98, E. Williams 34, H.H. Williams 120, W. Willis 34, S. Willocq 84, J.A. Wilson 17, M.G. Wilson 143, A. Wilson 87, I. Wingerter-Seez 4, S. Winkelmann 48, F. Winklmeier 29, M. Wittgen 143, M.W. Wolter 38, H. Wolters 124a,h, W.C. Wong 40, G. Wooden 87, B.K. Wosiek 38, J. Wotschack 29, M.J. Woudstra 84, K. Wraight 53, C. Wright 53, M. Wright 53, B. Wrona 73, S.L. Wu 172, X. Wu 49, Y. Wu 32b,ac, E. Wulf 34, R. Wunstorf 42, B.M. Wynne 45, L. Xaplanteris 9, S. Xella 35, S. Xie 48, Y. Xie 32a, C. Xu 32b,ad, D. Xu 139, G. Xu 32a, B. Yabsley 150, S. Yacoob 145b, M. Yamada 66, H. Yamaguchi 155, A. Yamamoto 66, K. Yamamoto 64, S. Yamamoto 155, T. Yamamura 155, T. Yamanaka 155, J. Yamaoka 44, T. Yamazaki 155, Y. Yamazaki 67, Z. Yan 21, H. Yang 87, U.K. Yang 82, Y. Yang 61, Y. Yang 32a, Z. Yang 146a,146b, S. Yanush 91, Y. Yao 14, Y. Yasu 66, G.V. Ybeles Smit 130, J. Ye 39, S. Ye 24, M. Yilmaz 3c, R. Yoosoofmiya 123, K. Yorita 170, R. Yoshida 5, C. Young 143, S. Youssef 21, D. Yu 24, J. Yu 7, J. Yu 112, L. Yuan 32a,ae, A. Yurkewicz 148, V.G. Zaets 128, R. Zaidan 63, A.M. Zaitsev 128, Z. Zajacova 29, Yo.K. Zalite 121, L. Zanello 132a,132b, P. Zarzhitsky 39, A. Zaytsev 107, C. Zeitnitz 174, M. Zeller 175, M. Zeman 125, A. Zemla 38, C. Zendler 20, O. Zenin 128, T. Zenis 144a, Z. Zenonos 122a,122b, S. Zenz 14, D. Zerwas 115, G. Zevi della Porta 57, Z. Zhan 32d, D. Zhang 32b,ab, H. Zhang 88, J. Zhang 5, X. Zhang 32d, Z. Zhang 115, L. Zhao 108, T. Zhao 138, Z. Zhao 32b, A. Zhemchugov 65, S. Zheng 32a, J. Zhong 151,af , B. Zhou 87, N. Zhou 163, Y. Zhou 151, C.G. Zhu 32d, H. Zhu 41, J. Zhu 87, Y. Zhu 32b, X. Zhuang 98, V. Zhuravlov 99, D. Zieminska 61, R. Zimmermann 20, S. Zimmermann 20, S. Zimmermann 48, M. Ziolkowski 141, R. Zitoun 4, L. Zivkovicґ 34, V.V. Zmouchko 128,, G. Zobernig 172, A. Zoccoli 19a,19b, Y. Zolnierowski 4, A. Zsenei 29, M. zur Nedden 15, V. Zutshi 106, L. Zwalinski 29 1 University at Albany, Albany, NY, United States 2 Department of Physics, University of Alberta, Edmonton, AB, Canada 3 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kutahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey 4 LAPP, CNRS/IN2P3 and Universitй de Savoie, Annecy-le-Vieux, France 5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States 6 Department of Physics, University of Arizona, Tucson, AZ, United States 7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States 8 Physics Department, University of Athens, Athens, Greece 9 Physics Department, National Technical University of Athens, Zografou, Greece 10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 11 Institut de Fнsica d'Altes Energies and Departament de Fнsica de la Universitat Autтnoma de Barcelona and ICREA, Barcelona, Spain 12 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, Belgrade, Serbia 13 Department for Physics and Technology, University of Bergen, Bergen, Norway 14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States 15 Department of Physics, Humboldt University, Berlin, Germany 16 Albert Einstein Center for FundaMental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey 19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Universitа di Bologna, Bologna, Italy 20 Physikalisches Institut, University of Bonn, Bonn, Germany 21 Department of Physics, Boston University, Boston, MA, United States 22 Department of Physics, Brandeis University, Waltham, MA, United States 23 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 24 Physics Department, Brookhaven National Laboratory, Upton, NY, United States 25 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania 26 Departamento de Fнsica, Universidad de Buenos Aires, Buenos Aires, Argentina 27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 28 Department of Physics, Carleton University, Ottawa, ON, Canada 29 CERN, Geneva, Switzerland 30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States 31 (a)Departamento de Fнsica, Pontificia Universidad Catуlica de Chile, Santiago; (b)Departamento de Fнsica, Universidad Tйcnica Federico Santa Marнa, Valparaнso, Chile 32 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)High Energy Physics Group, Shandong University, Shandong, China 33 Laboratoire de Physique Corpusculaire, Clermont Universitй and Universitй Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France 34 Nevis Laboratory, Columbia University, Irvington, NY, United States 35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Universitа della Calabria, Arcavata di Rende, Italy 37 Faculty of Physics and Applied computer science, AGH ­ University of Science and Technology, Krakow, Poland 38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland 39 Physics Department, Southern Methodist University, Dallas, TX, United States
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
535
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States 41 DESY, Hamburg and Zeuthen, Germany 42 Institut fьr Experimentelle Physik IV, Technische Universitдt Dortmund, Dortmund, Germany 43 Institut fьr Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany 44 Department of Physics, Duke University, Durham, NC, United States 45 SUPA ­ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy 48 Fakultдt fьr Mathematik und Physik, Albert-Ludwigs-Universitдt, Freiburg i.Br., Germany 49 Section de Physique, Universitй de Genиve, Geneva, Switzerland 50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Universitа di Genova, Genova, Italy 51 (a)E.Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 52 II Physikalisches Institut, Justus-Liebig-Universitдt Giessen, Giessen, Germany 53 SUPA ­ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 54 II Physikalisches Institut, Georg-August-Universitдt, Gцttingen, Germany 55 Laboratoire de Physique Subatomique et de Cosmologie, Universitй Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France 56 Department of Physics, Hampton University, Hampton, VA, United States 57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States 58 (a)Kirchhoff-Institut fьr Physik, Ruprecht-Karls-Universitдt Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universitдt Heidelberg, Heidelberg; (c)ZITI Institut fьr Technische Informatik, Ruprecht-Karls-Universitдt Heidelberg, Mannheim, Germany 59 Faculty of Science, Hiroshima University, Hiroshima, Japan 60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 61 Department of Physics, Indiana University, Bloomington, IN, United States 62 Institut fьr Astro- und Teilchenphysik, Leopold-Franzens-Universitдt, Innsbruck, Austria 63 University of Iowa, Iowa City, IA, United States 64 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States 65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 67 Graduate School of Science, Kobe University, Kobe, Japan 68 Faculty of Science, Kyoto University, Kyoto, Japan 69 Kyoto University of Education, Kyoto, Japan 70 Instituto de Fнsica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 71 Physics Department, Lancaster University, Lancaster, United Kingdom 72 (a)INFN Sezione di Lecce; (b)Dipartimento di Fisica, Universitа del Salento, Lecce, Italy 73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia 75 Department of Physics, Queen Mary University of London, London, United Kingdom 76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 77 Department of Physics and Astronomy, University College London, London, United Kingdom 78 Laboratoire de Physique Nuclйaire et de Hautes Energies, UPMC and Universitй Paris-Diderot and CNRS/IN2P3, Paris, France 79 Fysiska Institutionen, Lunds Universitet, Lund, Sweden 80 Departamento de Fisica Teorica, C-15, Universidad Autonoma de Madrid, Madrid, Spain 81 Institut fьr Physik, Universitдt Mainz, Mainz, Germany 82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 83 CPPM, Aix-Marseille Universitй and CNRS/IN2P3, Marseille, France 84 Department of Physics, University of Massachusetts, Amherst, MA, United States 85 Department of Physics, McGill University, Montreal, QC, Canada 86 School of Physics, University of Melbourne, Victoria, Australia 87 Department of Physics, The University of Michigan, Ann Arbor, MI, United States 88 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States 89 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Universitа di Milano, Milano, Italy 90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus 92 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States 93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada 94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia 95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia 97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 98 Fakultдt fьr Physik, Ludwig-Maximilians-Universitдt Mьnchen, Mьnchen, Germany 99 Max-Planck-Institut fьr Physik (Werner-Heisenberg-Institut), Mьnchen, Germany 100 Nagasaki Institute of Applied Science, Nagasaki, Japan 101 Graduate School of Science, Nagoya University, Nagoya, Japan 102 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Universitа di Napoli, Napoli, Italy 103 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States 104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands 105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands 106 Department of Physics, Northern Illinois University, DeKalb, IL, United States 107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia 108 Department of Physics, New York University, New York, NY, United States 109 Ohio State University, Columbus, OH, United States 110 Faculty of Science, Okayama University, Okayama, Japan 111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States 112 Department of Physics, Oklahoma State University, Stillwater, OK, United States 113 Palackэ University, RCPTM, Olomouc, Czech Republic 114 Center for High Energy Physics, University of Oregon, Eugene, OR, United States 115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France 116 Graduate School of Science, Osaka University, Osaka, Japan 117 Department of Physics, University of Oslo, Oslo, Norway
536
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
118 Department of Physics, Oxford University, Oxford, United Kingdom 119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Universitа di Pavia, Pavia, Italy 120 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States 121 Petersburg Nuclear Physics Institute, Gatchina, Russia 122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Universitа di Pisa, Pisa, Italy 123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States 124 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas ­ LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain 125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic 127 Czech Technical University in Prague, Praha, Czech Republic 128 State Research Center Institute for High Energy Physics, Protvino, Russia 129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 130 Physics Department, University of Regina, Regina, SK, Canada 131 Ritsumeikan University, Kusatsu, Shiga, Japan 132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Universitа La Sapienza, Roma, Italy 133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Universitа di Roma Tor Vergata, Roma, Italy 134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Universitа Roma Tre, Roma, Italy 135 (a)Facultй des Sciences Ain Chock, Rйseau Universitaire de Physique des Hautes Energies, Universitй Hassan II, Casablanca; (b)Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c)Universitй Cadi Ayyad, Facultй des Sciences Semlalia, Dйpartement de Physique, B.P. 2390 Marrakech 40000; (d)Facultй des Sciences, Universitй Mohamed Premier and LPTPM, Oujda; (e)Facultй des Sciences, Universitй Mohammed V, Rabat, Morocco 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France 137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States 138 Department of Physics, University of Washington, Seattle, WA, United States 139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom 140 Department of Physics, Shinshu University, Nagano, Japan 141 Fachbereich Physik, Universitдt Siegen, Siegen, Germany 142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada 143 SLAC National Accelerator Laboratory, Stanford, CA, United States 144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 145 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa 146 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden 147 Physics Department, Royal Institute of Technology, Stockholm, Sweden 148 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States 149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 150 School of Physics, University of Sydney, Sydney, Australia 151 Institute of Physics, Academia Sinica, Taipei, Taiwan 152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel 154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan 156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 158 Department of Physics, University of Toronto, Toronto, ON, Canada 159 (a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada 160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan 161 Science and Technology Center, Tufts University, Medford, MA, United States 162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States 164 (a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Fisica, Universitа di Udine, Udine, Italy 165 Department of Physics, University of Illinois, Urbana, IL, United States 166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 167 Instituto de Fнsica Corpuscular (IFIC) and Departamento de Fнsica Atуmica, Molecular y Nuclear and Departamento de Ingenierнa Electrуnica and Instituto de Microelectrуnica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain 168 Department of Physics, University of British Columbia, Vancouver, BC, Canada 169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada 170 Waseda University, Tokyo, Japan 171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 172 Department of Physics, University of Wisconsin, Madison, WI, United States 173 Fakultдt fьr Physik und Astronomie, Julius-Maximilians-Universitдt, Wьrzburg, Germany 174 Fachbereich C Physik, Bergische Universitдt Wuppertal, Wuppertal, Germany 175 Department of Physics, Yale University, New Haven, CT, United States 176 Yerevan Physics Institute, Yerevan, Armenia 177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas ­ LIP, Lisboa, Portugal. b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal. c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom. d Also at CPPM, Aix-Marseille Universitй and CNRS/IN2P3, Marseille, France. e Also at TRIUMF, Vancouver, BC, Canada. f Also at Department of Physics, California State University, Fresno, CA, United States. g Also at Fermilab, Batavia, IL, United States. h Also at Department of Physics, University of Coimbra, Coimbra, Portugal. i Also at Universitа di Napoli Parthenope, Napoli, Italy. j Also at Institute of Particle Physics (IPP), Canada. k Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
ATLAS Collaboration / Physics Letters B 710 (2012) 519­537
537
l Also at Louisiana Tech University, Ruston, LA, United States. m Also at Faculty of Physics and Applied Computer Science, AGH ­ University of Science and Technology, Krakow, Poland. n Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada. o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan. p Also at Institut fьr Experimentalphysik, Universitдt Hamburg, Hamburg, Germany. q Also at Manhattan College, New York, NY, United States. r Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China. s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan. t Also at High Energy Physics Group, Shandong University, Shandong, China. u Also at Section de Physique, Universitй de Genиve, Geneva, Switzerland. v Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal. w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States. x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. y Also at California Institute of Technology, Pasadena, CA, United States. z Also at Institute of Physics, Jagiellonian University, Krakow, Poland. aa Also at Department of Physics, Oxford University, Oxford, United Kingdom. ab Also at Institute of Physics, Academia Sinica, Taipei, Taiwan. ac Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States. ad Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France. ae Also at Laboratoire de Physique Nuclйaire et de Hautes Energies, UPMC and Universitй Paris-Diderot and CNRS/IN2P3, Paris, France. af Also at Department of Physics, Nanjing University, Jiangsu, China. Deceased.

A Collaboration

File: search-for-diphoton-events-with-large-missing-transverse-momentum.pdf
Author: A Collaboration
Author: ATLAS Collaboration
Published: Wed May 16 12:00:34 2018
Pages: 20
File size: 1.23 Mb


Buriedtreasure, 16 pages, 1.56 Mb

internationaal privaatrecht, 13 pages, 0.35 Mb
Copyright © 2018 doc.uments.com