Indexed bibliography of genetic algorithms in mathematics and statistics, JT Alander

Tags: Genetic algorithms, genetic algorithm, mathematics and statistics, IEEE, International Conference, Piscataway, NJ, artificial intelligence, experimental design, neural networks, evolutionary algorithm, inverse problems, finite state machine, logistic regression, optimization, genetic programming, inverse problem, IEEE International Conference, Australian Software Engineering Conference, Aristides T. Hatjimihail, Journal articles, J. Wayland Eheart, David B. Fogel, Michael T. Semertzidis, regression testing, IEEE Southwest Symposium, Mark A. Arnold, IEEE Transactions on Evolutionary Computation, International Workshop, Computational Intelligence, David E. Goldberg, Ronald E. Shaffer, European Conference, Statistics, IEEE Computer Society Press, Jarmo T. Alander, finite state machines, cellular automata, factorial design, state machine, Authors Zhang, International Conference on Soft Computing, Geophysical Journal International, Journal of Lightwave Technology, International Journal of Computer Math., neural network, artificial brain, mathematics, Jarmo T. Alander Department of Electrical and Energy Engineering, Jarmo T. Alander Trademarks Product, Geographical distribution, decision tree, decision trees, finite state, image processing, David Romero
Content: An Indexed Bibliography of Genetic Algorithms in Mathematics and Statistics compiled by Jarmo T. Alander Department of Electrical and Energy Engineering: Automation University of Vaasa P.O. Box 700, FIN-65101 Vaasa, Finland phone: +358-29-449 8444, Dedicated to Prof. James Pitman Report Series No. 94-1-MATH (Updated 2016/01/04 22:00 ) Available at http://www.uva.fi/~TAU/reports/report94-1/gaMATHbib.pdf
Copyright c 1994-2016 Jarmo T. Alander Trademarks Product and company names listed are trademarks or trade names of their respective companies. Warning While this bibliography has been compiled with the utmost care, the editor takes no responsibility for any errors, missing information, the contents or quality of the references, nor for the usefulness and/or the consequences of their application. The fact that a reference is included in this publication does not imply a recommendation. The use of any of the methods in the references is entirely at the user's own responsibility. Especially the above warning applies to those references that are marked by trailing '' (or '*'), which are the ones that the editor has unfortunately not had the opportunity to read. An abstract was available of the references marked with '*'.
Contents
1 Preface
1
1.1 Your contributions erroneous or missing? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 How to cite this report? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 How to get this report via Internet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Introduction
4
3 Statistical summaries
7
3.1 Publication type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Annual distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Geographical distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Conclusions and future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Indexes
11
4.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Journal articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 PhD theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Master's theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Report series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Annual index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Geographical index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Bibliography
51
Appendixes
111
A Bibliography entry formats
111
i
ii
Chapter 1 Preface " Living organism are consummate problem solvers. They exhibit a versatility that puts the best computer programs to shame. " John H. Holland, [1] The material of this bibliography has been extracted from the genetic algorithm bibliography [2], which when this report was compiled (January 4, 2016) contained 23416 items and which has been collected from several sources of genetic algorithm literature including Usenet newsgroup comp.ai.genetic and the bibliographies [3, 4, 5, 6]. The following index periodicals and databases have been used systematically · A: International Aerospace Abstracts: Jan. 1995 ­ Sep. 1998 · ACM: ACM Guide to Computing Literature: 1979 ­ 1993/4 · BA: Biological Abstracts: July 1996 - Aug. 1998 · CA: Computer Abstracts: Jan. 1993 ­ Feb. 1995 · CCA: Computer & Control Abstracts: Jan. 1992 ­ Dec. 1999 (except May -95) · ChA: Chemical Abstracts: Jan. 1997 - Dec. 2000 · CTI: Current Technology Index Jan./Feb. 1993 ­ Jan./Feb. 1994 · DAI: Dissertation Abstracts International: Vol. 53 No. 1 ­ Vol. 56 No. 10 (Apr. 1996) · EEA: Electrical & Electronics Abstracts: Jan. 1991 ­ Apr. 1998 · EI A: The Engineering Index Annual: 1987 ­ 1992 · EI M: The Engineering Index Monthly: Jan. 1993 ­ Apr. 1998 (except May 1997) · [email protected] patents ­ Apr. 2002 · IEEE: IEEE and IEE Journals ­ Fall 2002 · N: Scientific and Technical Aerospace Reports: Jan. 1993 - Dec. 1995 (except Oct. 1995) · NASA NASA ADS www bibliography database: ­ Dec. 2002 · P: Index to Scientific & Technical Proceedings: Jan. 1986 ­ Dec 1999 (except Nov. 1994) · PA: Physics Abstracts: Jan. 1997 ­ June 1999 · PubMed: National Library of Medicine Jan. 2000 ­ Oct. 2000, 2011-2013 · SPIE Web The International Society for Optical Engineering ­ June 2002 1
2
Genetic algorithms in mathematics and statistics
1.1 Your contributions erroneous or missing? The bibliography database is updated on a regular basis and certainly contains many errors and inconsistences. The editor would be glad to hear from any reader who notices any errors, missing information, articles etc. In the future a more complete version of this bibliography will be prepared for the genetic algorithms in mathematics and statistics research community and others who are interested in this rapidly growing area of genetic algorithms. When submitting updates to the database, paper copies of already published contributions are preferred. Paper copies (or ftp ones) are needed mainly for indexing. We are also doing reviews of different aspects and applications of GAs where we need as complete as possible collection of GA papers. Please, do not forget to include complete bibliographical information: copy also proceedings volume title pages, journal table of contents pages, etc. Observe that there exists several versions of each subbibliography, therefore the reference numbers are not unique and should not be used alone in communication, use the key appearing as the last item of the reference entry instead. Complete bibliographical information is really helpful for those who want to find your contribution in their libraries. If your paper was worth writing and publishing it is certainly worth to be referenced right in a bibliographical database read daily by GA researchers, both newcomers and established ones. 1.1.1 How to cite this report? You can use the BiBTEX file GASUB.bib, which is available in our site lipas.uwasa.fi in directory reports/report94-1 and contains records for GA subbibliographies for citing with LATEX/BibTEX. 1.2 How to get this report via Internet? Versions of this bibliography are available via www from the following site:
media country site
directory
file
web Finland lipas.uwasa.fi ~TAU/reports/report94-1 gaMATHbib.pdf
The directory also contains some other indexed GA bibliographies shown in table A.1. In case you do not find a proper one please let us know: it may be easy to tailor a new one.
1.3 Acknowledgement The editor wants to acknowledge all who have kindly supplied references, papers and other information on genetic algorithms in mathematics and statistics literature. At least the following GA researchers have already kindly supplied their complete autobibliographies and/or proofread references to their papers: Dan Adler, Patrick Argos, Jarmo T. Alander, James E. Baker, Wolfgang Banzhaf, Helio J. C. Barbosa, Hans-Georg Beyer, Christian Bierwirth, Peter Bober Joachim Born, Ralf Bruns, I. L. Bukatova, Thomas BЁack, Chhandra Chakraborti, Nirupam Chakraborti, David E. Clark, Carlos A. Coello Coello, Yuval Davidor, Dipankar Dasgupta, Marco Dorigo, J. Wayland Eheart, Bogdan Filipic, Terence C. Fogarty, David B. Fogel, Toshio Fukuda, Hugo de Garis, Robert C. Glen, David E. Goldberg, Martina GorgesSchleuter, Hitoshi Hemmi, Vasant Honavar, Jeffrey Horn, Aristides T. Hatjimihail, Heikki HyЁotyniemi Mark J. Jakiela, Richard S. Judson, Bryant A. Julstrom, Charles L. Karr, Akihiko Konagaya, Aaron Konstam, John R. Koza, Kristinn Kristinsson, Malay K. Kundu, D. P. Kwok, Jouni Lampinen, Jorma Laurikkala, Gregory Levitin, Carlos B. Lucasius, Timo Mantere, Michael de la Maza, John R. McDonnell, J. J. Merelo, Laurence D. Merkle, Zbigniew Michalewics, Melanie Mitchell, David J. Nettleton, Volker Nissen, Ari Nissinen, Tatsuya Niwa, Tomasz Ostrowski, Kihong Park, Jakub Podgґorski, Timo Poranen, Nicholas J. Radcliffe, Colin R. Reeves, Gordon Roberts, David Rogers, David Romero, Sam Sandqvist, Ivan Santibaґn~ez-Koref, Marc Schoenauer, Markus Schwehm, Hans-Paul Schwefel, Michael T. Semertzidis, Davil L. Shealy, Moshe Sipper, William M. Spears, Donald S. Szarkowicz, El-Ghazali Talbi, Masahiro Tanaka, Leigh Tesfatsion, Peter M. Todd, Marco Tomassini, Andrew L. Tuson, Kanji Ueda, Jari Vaario,
Acknowledgement
3
Gilles Venturini, Hans-Michael Voigt, Roger L. Wainwright, D. Eric Walters, James F. Whidborne, Stefan Wiegand, Steward W. Wilson, Xin Yao, Xiaodong Yin, and Ljudmila A. Zinchenko. The editor also wants to acknowledge Elizabeth Heap-Talvela for her kind proofreading of the manuscript of this bibliography and Tea Ollanketo and Sakari Kauvosaari for updating the database. Prof. Timo Salmi and the Computer Centre of University of Vaasa is acknowledged for providing and managing the online web site lipas.uwasa.fi, where these indexed bibliographies are located since Summer 2012.
Chapter 2 Introduction "Many scientist, possibly most scientist, just do science without thinking too much about it. They run experiments, make observations, show how certain data conflict with more general views, set out theories, and so on. Periodically, however, some of us--scientists included--step back and look at what is going on in science." David L., Hull, [7] The table 2.1 gives the queries that have been used to extract this bibliography. The query system as well as the indexing tools used to compile this report from the BiBTEX-database [8] have been implemented by the author mainly as sets of simple awk and gawk programs [9, 10]. You might also find the bibliographies [11], and [12], containing more general economics and operations research related references, interesting. 4
Introduction
5
string time-serie time serie time-serie time serie algebra statistics regression curve fitting cryptology experimental design linear algebra matrix mathematics inverse problem optimization /global Optimization graphs automata optimization /combina SAT decision tree decision tree OBDD OBDD Mathematic Statistic Math. SIAM
field ANNOTE ANNOTE TITLE TITLE ANNOTE ANNOTE TITLE TITLE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE JOURNAL ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE TITLE ANNOTE TITLE JOURNAL JOURNAL JOURNAL JOURNAL
class Statistics Statistics Statistics Statistics Algebra Statistics Regression Regression Cryptology Experimental design Linear algebra Linear algebra Mathematics Inverse problems Global optimization Optimization Graph theory Automata Combinatorial optimization Satisfiability problems Decision trees Decision trees OBDD OBDD Mathematical journal Statistical journal Mathematical journal Mathematical journal of SIAM
Table 2.1: Queries used to extract this subbibliography from the source database.
6
Genetic algorithms in mathematics and statistics
Chapter 3 Statistical summaries
This chapter gives some general statistical summaries of genetic algorithms in mathematics and statistics literature. More detailed indexes can be found in the next chapter. References to each class (c.f table 2.1) are listed below:
· Statistical journal 32 references ([891]-[922]) · Statistics 126 references ([923]-[1048]) Observe that each reference is included (by the computer) only to one of the above classes (see the queries for classification in table 2.1; the textual order in the query gives priority for classes).
· Algebra 5 references ([13]-[17]) · Automata 134 references ([18]-[151]) · Combinatorial optimization 34 references ([152]-[185]) · Cryptology 11 references ([186]-[196]) · Decision trees 37 references ([197]-[233]) · Experimental design 25 references ([234][258]) · Global optimization 35 references ([259][293])
3.1 Publication type This bibliography contains published contributions including reports and patents. All unpublished manuscripts have been omitted unless accepted for publication. In addition theses, PhD, MSc etc., are also included whether or not published somewhere. Table 3.1 gives the distribution of publication type of the whole bibliography. Observe that the number of journal articles may also include articles published or to be published in unknown forums.
· Graph theory 111 references ([294]-[404]) · Inverse problems 104 references ([405]-[508]) · Linear algebra 5 references ([509]-[513]) · Mathematical journal 150 references ([514][663]) · Mathematical journal of SIAM 9 references ([664]-[672])
type book part of a collection journal article proceedings article report PhD thesis MSc thesis others total
number of items 8 18 542 408 24 23 9 4 1036
· Mathematics 14 references ([673]-[686]) · OBDD 36 references ([687]-[722])
Table 3.1: Distribution of publication type.
· Optimization 47 references ([723]-[769]) · Regression 83 references ([770]-[852])
3.2 Annual distribution
· Satisfiability problems 38 references ([853]- Table 3.2 gives the number of genetic algorithms
[890])
in mathematics and statistics papers published
7
8
Genetic algorithms in mathematics and statistics
annually. The annual distribution is also shown in fig. 3.1. The average annual growth of GA papers has been approximately 40 % during late 70's - early 90's.
year 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 total
items 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 2 5 17 49 81 115 95 52 23 8 11 11 18 27 5
year 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
items 0 0 0 0 1 0 3 0 1 0 1 1 0 0 3 4 9 33 100 115 68 55 49 9 11 13 10 24 3 1036
Table 3.2: Annual distribution of contributions.
3.3 Classification Every bibliography item has been given at least one describing keyword or classification by the editor of this bibliography. Keywords occurring most are shown in table 3.3.
Total graphs optimization inverse problems cellular automata neural networks time series engineering genetic programming regression comparison automata hybrid medicine analysing GA statistics OBDD VLSI parallel GA SAT implementation decision trees image processing machine learning mathematics physics experimental design electromagnetics control chemistry signal processing economics geophysics fuzzy systems TSP spectroscopy pattern recognition medical imaging time-series scheduling review cryptology crossover coding manufacturing fractals others
1011 107 95 89 76 73 72 63 52 49 48 48 45 39 39 35 33 32 28 28 26 25 24 18 17 16 16 16 16 16 15 15 14 14 14 12 12 12 11 11 11 11 11 11 10 10 2173
Table 3.3: The most popular subjects.
Authors
9
3.4 Authors Table 3.4 gives the most productive authors.
total number of authors Crutchfield, James P. Garis, Hugo de Mitchell, Melanie Sipper, Moshe Drechsler, Rolf Fogarty, Terence C. Janikow, Cezary Z. Tomassini, Marco Battaglia, Francesco Becker, Bernd Hajela, Prabhat Michalewicz, Zbigniew Reeves, Colin R. Whitley, Darrell 20 authors 36 authors 188 authors 1760 authors
2018 10 10 8 8 7 6 6 6 5 5 5 5 5 5 4 3 2 1
Table 3.4: The most productive genetic algorithms in mathematics and statistics authors.
6Genetic algorithms in mathematics and statistics
1000 number of (log scale) 100 10 c cc ccc c cc
scpcacpccecrcscccccccccscscscscsccscscsscscsccsscscscscscscsccscscsscscscscscscscsc
c s1c cc s ss s ss s
-
1960 2016/01/04
1970
1980 1990 year
2000
2010
Figure 3.1: The number of papers applying genetic algorithms in mathematics and statistics (·, N = 1043 ) and total GA papers (, N = 23416 ). Observe that the last few years are most incomplete in the database.
10
Genetic algorithms in mathematics and statistics
3.5 Geographical distribution
Table 3.5 gives the geographical distribution of authors, when the country of the author was known. Over 80% of the references of the GA source database are classified by country.
2016/01/04 country Total United States United Kingdom Japan China Germany Finland France Italy Spain Australia India Poland South Korea Brazil Canada Taiwan The Czech Republic The Netherlands Switzerland Belgium Others
special
n
%
982 100.00
260 26.48
82 8.35
69 7.03
52 5.30
52 5.30
44 4.48
32 3.26
31 3.16
26 2.65
25 2.55
25 2.55
17 1.73
17 1.73
16 1.63
16 1.63
16 1.63
14 1.43
13 1.32
12 1.22
10 1.02
130 13.21
comparison [%] [%]
+0.35 -1.42 -4.20 -0.54 -1.21 +0.45 +0.72 +0.34 +0.53 +0.13 +0.33 +0.87 -0.49 +0.53 +0.00 -0.68 +0.74 +0.34 +0.37 +0.20 +3.17
+1 -15 -37 -9 -19 +11 +28 +12 +25 +5 +15 +101 -22 +48 +0 -29 +107 +35 +44 +24 +32
all
N
%
22212 100.00
5804 26.13
2170 9.77
2495 11.23
1297 5.84
1446 6.51
895 4.03
564 2.54
626 2.82
471 2.12
538 2.42
492 2.22
192 0.86
494 2.22
245 1.10
362 1.63
512 2.31
154 0.69
218 0.98
188 0.85
182 0.82
2232 10.04
Table 3.5: The geographical distribution of the authors working on genetic algorithms in mathematics
and statistics (n) compared ( and ) to all authors in the field of GAs (N ). In the comparison column:
%
=
%special-%all
and

=
(1 -
nNT otal N nT otal
)
Ч
100%.

is
the
relative
(%)
deviation
from
the
expected
number of special papers. Observe that joint papers may have authors from several countries and that
not all authors have been attributed to a country.
You can find a World map showing the geographical distribution of the authors of the papers at http://lipas.uwasa.fi/~TAU/reports/report94-1/GAworldMap.html?ABBR=MATH.
3.6 Conclusions and future The editor believes that this bibliography contains references to most genetic algorithms in mathematics and statistics contributions upto and including the year 1998 and the editor hopes that this bibliography could give some help to those who are working or planning to work in this rapidly growing area of genetic algorithms.
Chapter 4 Indexes
4.1 Books The following list contains all items classified as books. Advanced BDD optimisation, [691] Computational Statistics, [930] Evolution of Parallel Cellular Machines, [109] Evolutionary Computation, Principles and Practice for Sig- nal Processing, [959] Genetic Algorithms & Engineering Design, [173] Modeling Nature, Cellular Automata Simulations with Mathematica, [81] Modern Heuristic Techniques for Combinatorial Problems, [183] Theory of Self-Reproducing Automata, [143] total 8 books
4.2 Journal articles The following list contains the references to every journal article included in this bibliography. The list is arranged in alphabetical order by the name of the journal.
ACM Trans. Math. Softw., [521]
Acta Electronica Sinica (China), [710]
Acta Informatica,
[706]
Acta Polytech. Scand. Math. Comput. Manag. Eng. Ser. (Finland), [536]
Advanced Technology for Developers, [1035]
Advances in Applied Mathematics, [553, 632]
African Journal of Mathematics and Computer Science Research, [560]
AI Expert,
[187]
American Journal of Mathematical and Management Sciences, [612]
Analytica Chimica Acta, [775, 787, 788, 791, 796, 822, 843]
Analytical Chemistry, [820, 826]
Annals of Mathematics and Artificial Intelligence, 588, 593, 594, 637, 642, 659, 660, 661, 662]
[585,
Annals of Operations Research, [355]
Appl. Math. Comput., [537]
Appl. Math. Comput. (USA), [534, 542]
Appl. Math. Comput. Sci. (Poland), [524, 530]
Appl. Math. Modelling, [517, 531]
Appl. Spectrosc. (USA), [841]
Applied and Computational Mathematics, [556]
Applied Mathematical Finance, [596]
Applied Mathematical Modelling, [548, 549, 625]
Applied Mathematical Sciences, [575]
Applied Mathematics and Computation, 620, 621, 622, 626, 643]
[557, 578, 609,
Applied Mathematics and Information Sciences, [579]
Applied Mathematics Letters, [623]
Applied Optics,
[497]
Applied Soft Computing, [438, 975]
Artif. Life Robot. (Japan), [386]
Artificial Intelligence in Engineering (UK), [225]
Artificial Intelligence in Medicine, [1032, 931]
Astronomy & Astrophysics, [420]
Atmospheric Environment, [970]
Atmospheric Environment Part A General Topics, [513]
Australian Journal of Intelligent Information Processing Systems, [781]
Beijing University of Aeronautics and Astronautics, Journal, [493]
Belgian Journal of Operations Research, Statistics and Computer Science, [920, 921]
Belgium Journal of Operations Research, Statistics and Computer Science, [918]
Bioinformatics,
[863]
Biological Cybernetics, [167]
BioSystems,
[108]
11
12
Genetic algorithms in mathematics and statistics
Biotechnology Progress, [243]
Bulletin of Mathematical Biology, [550]
Cancer Letters,
[831]
Chaos: An Interdisciplinary Journal of Nonlinear Science, [1025]
Chemical Biology & Drug Design, [800]
Chemometrics and Intelligent Laboratory Systems, [799, 817, 819, 842, 846]
Chin. J. Electron. (China), [278]
Communications in Statistics - Theory and Methods, [897]
COMPEL ­ The International Journal for Computations and Mathematics in Electrical and Electronic Engineering, [610, 663]
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, [555]
Comput. Econ. (Netherlands), [250]
Comput. Intell. (USA), [1020]
Comput. Math. Appl., [515]
Computational and Mathematical Methods in Medicine, [566, 567, 568, 571, 572, 573, 576]
Computational Optimization and Applications, [744, 748]
Computational Statistics, [891, 905]
Computational Statistics & Data analysis, [892]
Computational Statistics & Data Analysis, [915]
Computer,
[274]
Computer Physics Communications, [960]
Computer. Chem. Eng., [285]
Computers and Mathematics with Applications, [561, 627]
Computers in Chemical Engineering, [382]
Computers in Physics, [265, 267]
Computers & Industrial Engineering, [816, 341, 827]
Computers & Mathematics with Applications, [584, 592, 599, 601, 606, 607, 615, 619, 628, 633, 634, 639, 646, 647]
Computers & Operations Research, [317]
Control Cybern. (Poland), [331]
Cryptologia,
[186, 188, 193, 194, 195]
Current Drug Discovery Technologies, [797]
Decis Support Syst (Netherlands), [824]
Decision Support Systems, [1038]
DIMACS,
[874]
Discrete Applied Mathematics, [586, 589, 631]
Discrete Applied Mathematics (Netherlands), [600]
Dr. Dobb's Journal, [315]
Electr. Power Syst. Res. (Switzerland), [1040]
Electronic Notes in Discrete Mathematics, [562]
Electronics Letters,
[297, 702]
Elektrie. (Germany), [490]
Eng. Comput. (UK), [473]
Engineering Applications of Artificial Intelligence, 676, 684]
[969,
Engineering Computations, [467]
Engineering Optimization, [724, 735, 740, 741, 743, 745, 746, 757, 758, 761, 762, 765, 769]
Environmental monitoring and Assessment, [806]
Environmental Research, [812]
European Journal of Operational Research, [177]
Europhysics Letters, [924]
Evidence-based Complementary and Alternative Medicine : ECAM, [230]
Expert Systems,
[309, 968]
Exposition. Math.,
[523]
Far East Journal of Mathematical Sciences, [656]
Fatigue and Fracture of Engineering Materials and Structures, [296]
Finite Elements in Analysis and Design, [234]
Fuel,
[805]
Gaodeng Xuexiao Huaxue Xuebao, [390]
Geophysical Journal International, [416, 496, 500, 501]
Geophysical Prospecting, [437]
Geophysical Research Letters, [953, 952]
Geophysics,
[476]
Geophysics Journal International, [450]
Ground Water,
[427]
Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, [803, 814]
I. Irish Math. Soc. Bull., [541]
IEE Proc., Control Theory Appl. (UK), [851]
IEE Proceedings - Circuits, Devices and Systems, [712]
IEE Proceedings - Computation Digital Technology, [709]
IEE Proceedings - Computer and Digital Techniques, [22]
IEE Proceedings E: Comput. Digit. Tech., [391]
IEE Proceedings, Computer and Digital Techniques, [30]
IEE Proceedings, Computers and Digital Techniques, [75]
IEE Proceedings-Circuits Devices and Systems, [715]
IEE Proceedings-Computers and Digital Techniques, [704, 716]
IEEE Journal of Oceanic Engineering, [495]
IEEE Signal Processing Letters, [1015]
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (USA), [112]
IEEE Transactions on Antennas and Propagation, [411]
IEEE Transactions on Bio-medical Engineering, [1048]
IEEE Transactions on Biomedical Engineering, [446, 471, 487]
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [690, 184]
IEEE Transactions on Computers, [79, 360]
IEEE Transactions on Evolutionary Computation, [23, 861, 925, 40, 97]
IEEE Transactions on Fuzzy Systems, [793, 1012]
IEEE Transactions on Industrial Electronics, [1036]
IEEE Transactions on Information Technology in Biomedicine, [801]
IEEE Transactions on Instrumentation and Measurement, [432]
IEEE Transactions on Magnetics, [457, 468]
Journal articles
13
IEEE Transactions on Microwave Theory and Techniques, [433] IEEE Transactions on Neural Networks, [987, 1000, 1007, 1013] IEEE Transactions on Neural Networks and Learning Systems, [981] IEEE Transactions on Oceanic Engineering, [464] IEEE Transactions on Pattern Analysis and Machine Intelligence, [302, 779] IEEE Transactions on Systems, Man, and Cybernetics, [25, 26] IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, [273] IEEE Transactions on Systems, Man, and Cybernetics B, Cybernetics, [376] IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, [373] IMA Journal of Mathematics Applied in Business and Industry, [595, 640] IMA Journal of Mathematics Applied in Business and Industry (UK), [613] IMA Journal of Mathematics Applied in Medicine and Biology, [608] Information Processing Letters, [839] Information Sciences, [860, 961, 215] Information Sciences (USA), [218] Information Sciences: An International Journal, [792] Int. J. Appl. Electromagn. Mater. (Netherlands), [479] Int. J. Appl. Math. Comput. Sci. (Poland), [545] Int. J. Comput. Math., [539] Int. J. Heat Mass Transf., [478] Int. J. Knowl.-Based Intell. Eng. Syst. (Australia), [1024] Int. J. Prod. Res. (UK), [679] Int. J. Uncertain. Fuzziness Knowl.-Based Syst. (Singapore), [845] International Journal Computers and Mathematics, [657] International Journal for Numerical Methods in Engineering, [423] International Journal of Applied Electromagnetics and Mechanics, [408] International Journal of Computer Math., [518] International Journal of Computer Mathematics, [546] International Journal of Computing Science and Mathematics, [581] International Journal of Electronic and Electrical Engineering, [697] International Journal of Heat and Mass Transfer, [440] International Journal of Mathematical Sciences and Applications, [564] International Journal of Modern Physics C, [88] International Journal of Numerical Modeling: electronic networks, Devices and Fields, [469] International Journal of Pattern Recognition and Artificial Intelligence, [964] International Journal of Plasticity, [436]
International Statistical Review, [893]
International Transactions in Operational Research, [169]
J. Comput. Acoust. (Singapore), [483, 484]
J. Heuristics (Netherlands), [176]
J. Inf. Optimization Sci. (India), [750, 751, 753, 768]
J. Jpn. Soc. Artif. Intell. (Japan), [217]
J. KISS(A), Comput. Syst. Theory (South Korea), [103]
J. KISS(B), Softw. Appl. (South Korea), [1004]
J. Korea Inst. Telemat. Electron. (South Korean), [703]
J. Oper. Res. Soc.,
[365]
J. Phys. A, Math. Gen. (UK), [538]
J. Phys. A. Math. Gen. (UK), [525]
J. Stat. Plan. Inference (Netherlands), [942]
J. Structural Optimization, [763]
J. Syst. Eng. (UK), [245]
Journal of Applied Physics, [466]
Journal of Artificial Intelligence Research, [213]
Journal of Biological and Information Processing Systems (BioSystems), [454]
Journal of Chemical Information and Computer Sciences, [777, 932, 257]
Journal of Chemometrics, [825]
Journal of Complexity, [266]
Journal of Computers, [794, 808]
Journal of Economic Behavior and Organization, [83]
Journal of Economic Dynamics and Control, [966]
Journal of Engineering Materials and Technology, [419]
Journal of Food Engineering, [790]
Journal of Geophysical Research, [414, 492]
Journal of Global Optimization, [739, 752, 764]
Journal of Heuristics, [377]
Journal of Intelligent & Fuzzy Systems, [929]
Journal of Lightwave Technology, [491]
Journal of Mathematical Biology, [629, 650]
Journal of Mathematical Chemistry, [604]
Journal of Mathematical Imaging and Vision, [552]
Journal of Mathematical Sociology, [649]
Journal of Near Infrared Spectroscopy, [833, 836]
Journal of Operational Research, [153]
Journal of Optimization Theory and Applications, 754, 755, 759, 767]
[733,
Journal of Orthopaedic Research, [239]
Journal of Physics A - Mathematical and General, [638, 648]
Journal of Physics A: Mathematical and General, [590, 603, 614]
Journal of Physics D-Applied Physics, [770, 771]
Journal of Separation Science, [810]
Journal of Soviet Mathematics, [651, 652]
Journal of Statistical Software, [908]
Journal of the Air & Waste Management Association, [809]
Journal of the Brazilian Society of Mechanical Science and Engineering, [435]
14
Genetic algorithms in mathematics and statistics
Journal of the Operational Research Society, 368, 394]
[345, 251,
Journal of the Royal Statistical Society C, [919]
Journal of the Society of Instrument and Control Engineers, [66]
Journal of Theoretical Biology, [139]
Journal of Time Series Analysis, [978]
Jpn. J. Fuzzy Theory Syst. (USA), [232]
JSME Int. J. A, Solid Mech. Mater. Eng. (Japan), [121]
JSPP,
[398]
Kikai Gijutsu Kenkyusho Shoho, [458]
Machine Learning,
[228]
MATCH ­ Communications in Mathematical and in Computer Chemistry, [616]
Match-Communications in Mathematical and in Computer Chemistry, [565]
Math. Commun. (Croatia), [544]
Math. Comput. Model. (UK), [519, 526, 527, 532]
Math. Comput. Modelling, [520]
Math. Methods Oper. Res., [514]
Math. Oper. Res. (USA), [529]
Mathematical and Computer Modeling, [547]
Mathematical and Computer Modelling, [559, 563, 570, 591, 641, 644, 658]
Mathematical Biosciences, [569, 574, 635, 654, 655]
Mathematical Modelling, [653]
mathematical problems in Engineering, [580, 582, 583]
Mathematics and Computers in Modeling, [605, 617]
Mathematics and Computers in Simulalation, [630]
Mathematics and Computers in Simulation, [558, 577, 587, 602, 611, 618, 624, 636]
Med Phys,
[789]
Medical & Biological Engineering & Computing, [448]
Microelectron. J. (UK), [76]
Microelectronics Journal, [701]
Microprocessors and Microsystems, [343]
Microwave and Optical technology Letters, [430]
Molecules,
[802]
Mosc. Univ. Comput. Math. Cybern. (USA), [540]
Nature,
[857, 858, 37, 39]
Nature Materials,
[44]
Networks,
[338]
Networks (USA),
[367]
Neural Networks,
[104]
NeuroImage,
[237]
New Generation Computing Journal, [65]
Nippon Kikai Gakkai Ronbunshu A Hen, [461]
Nonlinear Analysis-Theory Methods & Applications, [282]
Nuclear Instruments & Methods in Physics Research A, [107]
Nuclear Technology, [989]
Numer. Heat Transfer A, Appl. (UK), [256]
Numer. Heat Transfer Part B Fundam., [460]
Operations Research, [206, 362]
Optimization (UK), [760]
OR Spektrum,
[111]
Parasites & Vectors, [980]
Particle & Particle Systems Characterization, [447]
Pattern Recognit. Image Anal. (Russia), [370]
Pattern Recognition, [294, 301, 207, 374]
PFG Photogrammetrie, Fernerkundung, Geoinformation Jahrgang, [209]
Physica A Statistical Mechanics and its Applications, [894]
Physica D,
[56, 990, 90, 106, 135]
Physical Review E,
[1011, 119]
Physical Review Letters, [955, 34]
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, [898, 900, 901, 902, 903, 907]
Physics in Medicine and Biology, [798]
Proc. AMIA Symp,
[850]
Quality and Reliability Engineering International, [713]
Railw. Gaz. Int.,
[453]
RAIRO Rech. Oper. (France), [261, 170]
Rech. Oper. (France), [279]
Rep. Math. Phys.,
[516]
Research Journal on Structural Optimization, [749]
Revista del Centro de Investigaciґon, Universidad La Salle, [954]
Risk Analysis,
[940]
SAR and QSAR in Environmental Research, [807]
Sc. Univ. Comput. Math. Cybern. (USA), [535]
Science,
[856, 866, 868, 287]
Science, Measurement & Technology, IET, [439]
Scientific Computing World, [259, 102]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, [441]
SIAM J Appl. Math., [528]
SIAM J. Control Optim., [670]
SIAM Journal of Control Optim. (USA), [669]
SIAM Journal on Computing, [664, 665, 667, 671]
SIAM Journal on Optimization, [766]
SIAM News,
[672]
SIAM Review,
[666, 668]
Soft Computing,
[444]
Soft Computing - A Fusion of Foundations, Methodologies and Applications, [786]
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, [804]
Statistical Applications in Genetics and Molecular Biology, [899, 906]
Statistics and Computing, [895, 896, 909, 910, 911, 912, 913, 914, 916, 917, 922]
Statistics in Medicine, [904]
Structural and Multidisciplinary Optimization, [723, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 737, 738, 742]
Structural Engineering and Mechanics, [417]
Theses
15
Structural Optimization, [756]
Structural Optimization Research Journal, [747]
Studia Univ. Babes-Bolyai, Informatica, [685]
Surveys on Mathematics for Industry, [551]
Syst. Comput. Jpn. (USA), [89]
Talanta,
[813]
Tatra Mt. Math. Publ. (Slovakia), [533, 543]
The Astrophysical Journal, [410]
The European Physical Journal B, [962, 947]
The European Physical Journal, Applied Physics, [406]
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, [554]
The International Journal of Advanced Manufacturing Technology, [424]
The International Journal of Mathematical Applications in Science and Technology, [598]
The Journal of the Acoustical Society of America, [449, 451, 455]
The Mathematica Journal, [597, 645]
Theoretical Computer Science, [19, 27]
Transactions of the Information Processing Society of Japan, [319]
Transactions of the Institute of Electrical Engineers of Japan C, [456]
Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), [86]
Transactions of the Institute of Electronics, Information, and Communication Engineers A (Japan), [275]
Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), [276]
Transactions of the Institute of System, Control, and Information Engineers (Japan), [1008]
Transactions of the Insttute of Electronics, Information, and Communication Engineers A (Japan), [369]
Transactions of the Society of Instrument and Control Engineers (Japan), [158, 168]
Virology Journal,
[811]
Vistas in Astronomy, [982]
Water Resources Research, [413]
Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, [50]
Z. Angew. Math. Mech. (Germany), [522]
total 542 articles in 329 series
4.3 Theses The following two lists contain theses, first PhD theses and then Master's etc. theses, arranged in alphabetical order by the name of the school.
4.3.1 PhD theses Academy of Sciences, [185]
Arizona State University, [235, 927]
Harvard University,
[293]
Helsinki University of Technology, [255]
Illinois Institute of Technology, [161]
Instituto Nacional de Pesquisas Espaciais, [380]
Louisiana State University of Agricultural and Mechanical College, [888] Syracuse University, [326]
The Pennsylvania State University, [316]
The University of Oklahoma, [180]
Universidade de S~ao Paulo, [442]
University of Bonn,
[397]
University of California, [262]
University of Durham, [463]
University of Illinois at Urbana-Champaign, [160, 1030]
University of Massachusetts Amherst, [928]
University of Pretoria, [196]
University of Tampere, [310] UniversitaЁt Erlangen-NuЁrnberg, [281] Universitґe Catholique de Louvain, [277] Utah State University, [428]
total 23 thesis in 21 schools
4.3.2 Master's theses This list includes also "Diplomarbeit", "Tech. Lic. Theses", etc.
George Mason University, [890]
Helsinki University of Technology, [298]
Montana State University, [936]
Tampere University of Technology, [984]
University of Missouri - Rolla, [400]
University of Nevada, [242]
University of Tampere, [354]
University of Utrecht, [985]
UniversitaЁt Wien,
[972]
total 9 thesis in 9 schools
16
Genetic algorithms in mathematics and statistics
4.4 Report series The following list contains references to all papers published as technical reports. The list is arranged in alphabetical order by the name of the institute.
Aarhus University,
[312]
Boston University,
[396]
COMISEF EU Network, [976, 977]
Chalmers Tekniska HoЁgskola, [402]
Colorado University at Boulder, [270]
Coventry University, [330]
Edinburgh Parallel Computing Centre, [17]
Eindhoven University of Technology, [392]
INRIA,
[498, 505]
Imperial College,
[945]
NAVY,
[774]
Naval Research Laboratory, [937]
Santa Fe Institute,
[72, 129, 140, 141]
Universidad de Mґalaga, [157]
University of Hawaii at Manoa, [253]
University of Tampere, [295, 313, 348, 361]
total 24 reports in 16 institutes
4.5 Patents The following list contains the names of the patents of genetic algorithms in mathematics and statistics. The list is arranged in alphabetical order by the name of the patent.
Automatic generating method for time-series pattern, [1044] Automatic time series pattern creating method, [1034] Nonlinear time-series data predicting device, [1039] Time-series prediction device, [1043] total 4 patents
Authors
17
4.6 Authors The following list contains all genetic algorithms in mathematics and statistics authors and references to their known contributions.
Aarts, E. H. L.,
[631]
Abbott, Derek,
[31]
Abe, K.,
[1026]
Abel-Wahab, A. H., [1045]
Aboulhamid, El Mostapha, [690]
Adamopoulos, A. V., [1001]
Adleman, Leonard M., [868]
Agapie, A.,
[992, 1014]
Agarwal, Reena,
[509]
Aggarwal, Charu C., [362]
Agrafiotis, Dimitris, [777]
Aguilar, J.,
[174]
Ahmad, I.,
[22]
Ahmad, Imtiaz,
[343]
Ahmad, Sabbir U.,
[409]
Ahn, Jae Joon,
[806]
Ahnert, Sebastian E., [900]
Aikawa, T.,
[957]
Aiyoshi, E.,
[168]
Aizawa, Akiko N.,
[584]
Akca, Irfan,
[437]
AkguЁn, Mehmet A., [726]
Akhond, Morteza,
[796]
Akinari, Yoshinori,
[457]
Akter, Salena,
[794]
Alander, Jarmo T., 854]
[249, 15, 175,
Alba, Enrique,
[895]
Albanese, Raffaele,
[408]
Albero-Ortiz, Antonio, [433]
Aldana Montes, Josґe Francisco, [157]
Allan, G.,
[251]
Allaoua, Hemmak,
[562]
Allison, Andrew G., [31]
Allouche, J.-P.,
[94, 99]
Almaini, A. E. A., 712]
[701, 75, 702,
Alonso Fernaґndez, J. R., [812]
Alpert, Bradley K.,
[632]
Al-Sultan, K. S.,
[345]
Alvarez, A.,
[960]
Aґ lvarez, Alberto,
[953, 955]
Alvarez, Luis F.,
[488]
Aґ lvarez, Miguel A. Aґ vila, [954]
Alves, Julio Cesar L., [805]
Amaritsakul, Yongyut, [576]
Anantha, Y.,
[680]
Andalib, Elham,
[571]
Anderson, Peter G., [300]
Anderson, William S., [1048]
Andrade-Campos, A., [436]
Andre, David,
[78, 91]
Andrews, J.,
[713]
Angeline, P. J.,
[16]
Angeline, Peter J.,
[673, 1016]
Angus, J. E.,
[519]
Anon.,
[639]
Ansari, Sepand,
[47]
Anselment, Bernd,
[243]
Ansong, Mary Opokua, [580, 582]
Aoki, T.,
[297]
Aoyama, T.,
[956]
Apetrei, Adriana,
[305]
Apolinaґrio Jr., J. A., [190, 191]
Aporntewan, C.,
[117]
Ara, K.,
[466]
Arabas, J.,
[389]
Aral, Mustafa M.,
[625]
Ardell, David H.,
[155]
Argast, J. D.,
[933]
Armano, G.,
[964]
Arnardottir, Helga Bjork, [906]
Arnold, Mark A.,
[820, 826]
Arnone, Salvatore,
[260]
Arrag, Sliman,
[575]
Arraiz, E.,
[350]
Arunkumar, S.,
[633]
Asadollahi, Tahereh, [802]
Asadollahi-Baboli, M., [807]
Ashlock, Dan,
[828]
Astola, Jaakko T.,
[13]
Autere, Antti,
[853]
Auvinen, P.,
[737]
Avila-Alvarez, M.,
[1018, 1028]
Aydin, M. Emin,
[236]
Baba, N.,
[60]
Baba, Roshidad,
[445]
Babu, G. Phanendra, [599]
BЁack, Thomas,
[163, 913]
Backhouse, P. G.,
[251]
Bae, Youngwhan,
[103]
Bagchi, Manish C.,
[800]
Bahri, I.,
[577]
Baier, Christel,
[692]
Bailleux, Olivier,
[43]
Baishnab, K. L.,
[697]
Balakrishnan, J.,
[520]
Balicki, J.,
[531]
Ballesteros, Rosario, [563]
Bangalore, Arjun S., [820]
Bank van der, Dirk Johannes, [196]
Banks, S. P.,
[131]
Bansal, A.,
[608]
Banzhaf, Wolfgang,
[829, 178, 634]
Baradhi, Ghinwa,
[830]
Baragona, Roberto,
[979]
Barba, P. Di,
[425]
Barenco, Adriano,
[667]
Baron, C.,
[122]
Baronti, Flavio,
[208]
Barrios, D.,
[539]
Barrґon, Carlos,
[623]
Barros, Rodrigo C.,
[210]
Bartal, Y.,
[989]
Bartlett, L.,
[713]
18
Genetic algorithms in mathematics and statistics
Barton, Geoffrey W., [818]
Bar-Yam, Y.,
[34]
Basanta, David,
[33, 42]
Basart, J. M.,
[379]
Basgalupp, Mґarcio P., [210]
Basokur, Ahmet T., [437]
Battaglia, Francesco, 978, 979, 905]
[976, 977,
Battle, S. A.,
[640]
Bauer, J.,
[732]
Bazgan, Chistina,
[327]
Beaumont, Mark A., [139]
Becker, Bernd, 721, 704, 705]
[325, 720,
Beder, Jay H.,
[528]
Beenstock, Michael, [966]
Belfiore, N. P.,
[754]
Bendahl, Par-Ola,
[931]
Benedetti, Manuel,
[432]
Benediktsson, J. A., [578]
Benini, Luca,
[675]
Benkhelifa, M. E. A., [577]
Bennett, III, Forrst H., [780]
Bennett III, Forrest H., [78, 91]
Bentley, Peter J.,
[33, 42]
Ben-Zion, Y.,
[422]
Berg, E.,
[948]
Bergholm, Ville,
[32]
Bergman, Aviv,
[127, 128]
Bergmann, Neil,
[125]
Berlanga, A.,
[18]
Berthiau, G.,
[406]
Berthiaume, Andrґe, [667]
Bertoni, Alberto,
[27]
Bessi`ere, Pierre,
[672]
Bhandari, Dinabandhu, [656]
Bickling, F.,
[261]
Bielza, C.,
[896]
Bilal, Osama R.,
[902]
Billina, S.,
[75]
Billings, S. A.,
[25, 26, 851]
Billings, S.,
[450]
Bilotta, Eleonora,
[28]
Bin, Li,
[967]
Birru, H. K.,
[1046]
Bitterman, Thomas A., [888]
Blanton, R. D. (Shawn), [844]
Blasco, Xavier,
[742]
Bloch, Jeffrey,
[552]
Boffey, T. B.,
[918]
Bogdan, Malgorzata, [906]
Boneh, D.,
[600]
Bong, Chin Wei,
[743]
Boor, S.,
[543]
Borisov, Arkady,
[222]
Bosman, Peter A. N., [923]
Bossomaier, Terry,
[116]
Bosund, V.,
[770, 771]
Bourset, F.,
[702]
Box, G. E. P.,
[919]
Bozkaya, Burcin,
[306]
Bradbeer, P.,
[220]
Bradley, Daryl,
[20]
Braich, Ravinderjit S., [868]
Bramanti, A.,
[425]
Branke, JuЁrgen,
[364, 111]
Brave, Scott,
[80]
Bremermann, H. J., [635]
Brezina, Toґas,
[460]
Brezina, Tomґas,
[470]
Brink, Anders,
[565]
Broadhurst, David,
[822]
Brodsky, Alex,
[665]
Brown, J. C.,
[410]
Bruckstein, A. M.,
[385]
Brudaru, Octav,
[698, 384]
Brugger, Katharina, [980]
Brumby, Steven,
[552]
Brusic, Vladimir,
[510]
Bucher, Frank,
[364]
Buckley, J. J.,
[840, 845]
Bui, Thang Nguyen, [335, 360]
Buiu, C.,
[618, 624]
Bunke, Horst,
[299, 302]
Burks, A. W.,
[133]
Bush, B.,
[877]
Buydens, L. M. C.,
[787]
Bystrov, A.,
[712]
Caballero-Morales, Santiago-Omar, [572]
Cai, H.,
[647]
Cai, Wen-Sheng,
[390]
Calegari, P.,
[176]
Cal^oba, L. P.,
[190, 191]
Camara, Leoncio Diogenes T., [444]
Cambiaghi, D.,
[878]
Campos, Fco. Alberto, [186]
Cannings, C.,
[608]
Cantuґ-Paz, Erick,
[199, 200]
Cao, Hongqing,
[1023]
Cao, U. J.,
[114]
Cao, Y. J.,
[548]
Caorsi, Salvatore,
[411]
Capcarrere, M. S.,
[100]
Capcarrere, Mathieu S., [107]
Caravalho, Deborah R., [197]
Cardona, Xavier Vilasis, [954]
Carmack, Patrick S., [904]
Carosio, Grazieli L. C., [442]
Carpentieri, Marco,
[27]
Carrasco, R. A.,
[14]
Carter, Bob,
[311, 339, 396]
Carter, J. N.,
[164]
Cartwright, Hugh M., [513]
Cascґon, Alberto,
[186]
Cassen, T.,
[337]
Castro, Jesus Silva,
[346]
Chabrier, Jean-Jacques, [43]
Chai, Bing-Bing,
[214]
Chai, Chin Teck,
[1003]
Chakraborti, N.,
[551]
Chakraborti, Nirupam, [549]
Chakraborty, Subrata, [500]
Chan, H.,
[320, 329]
Chan, K. Y.,
[792]
Chan, Kit Yan,
[236, 238]
Chan, Shu-Park,
[657, 403]
Chandrasekharam, R., [391]
Authors
Chang, Chih-Li,
[892]
Chao, Ching-Kong,
[239, 576]
Chapman, N. R.,
[495]
Charbonneau, Paul, [410, 502]
Chatterjee, Amitabha, [374]
Chatterjee, Sangit,
[915]
Chattopadhyay, S.,
[30]
Chaudhry, Peggy E., [309]
Chaudhry, Sohail S., [309]
Chaudhuri, P. Pal,
[38]
Chaudhury, Santanu, [374]
Chaudhury, Saurabh, [697, 699]
Chaudhury, S.,
[391]
Chaves, R. O.,
[190, 191]
Cheim, L.,
[941]
Chelland, Kirsty,
[790]
Chellapilla, K., 126]
[1015, 1046,
Chellapilla, Kumar,
[999]
Chelouah, Rachid,
[406]
Chelyapov, Nickolas, [868]
Chen, Cathy W. S., [891]
Chen, Cha'o-Kuang, [609]
Chen, Chieh-Li,
[609]
Chen, C.-Y.,
[424]
Chen, G. J.,
[719]
Chen, G.,
[532]
Chen, Haiyan,
[553]
Chen, L. Leon,
[1048]
Chen, Ling,
[700]
Chen, M. M.,
[248]
Chen, Peiqi,
[567]
Chen, Qinxue,
[499]
Chen, R. M. M.,
[939]
Chen, Serena H.,
[558]
Chen, Shu-Heng,
[1010]
Chen, Ting-Yu,
[234]
Chen, Xiao Yu,
[230]
Chen, Yuping,
[1023]
Cheng, A. H. D.,
[477]
Cheng, Runwei,
[173]
Cherng, Tsai-Hung, [891]
Chernobaev, A. A.,
[370]
Cheung, P. Y. K.,
[709, 716]
Chin, T. C.,
[1024]
Chinniah, C.,
[220]
Chiusano, S.,
[105]
Chiva, Emmanual,
[53]
Cho, Sang-Young,
[694]
Choate, Timothy D., [1000]
Chockalingam, T.,
[633]
Choi, Chulhee,
[795]
Chongstitvatana, P., [117]
Christiansen, Alan D., [757]
Chu, Lon-Chan,
[160]
Chu, Na,
[230]
Chuek, Chua Hong,
[1003]
Chung, Yoojin,
[694]
Cichosz, P.,
[708, 711]
Ciesielski, Victor B., [510]
Clark, David E.,
[616]
Clementi, Luis A.,
[447]
Cluitmans, L. J. M., [392]
Coello, Carlos A Coello, [724]
Coello Coello, Carlos A., [757, 758]
Cofin~o, A. S.,
[407]
Cofin~o, A. S.,
[968]
Cogan, Brian,
[259]
Coit, D. W.,
[156]
Collet, Pierre,
[443]
Collins, S.,
[773]
Colombetti, Marco,
[61]
Colorni, Alberto,
[169]
Comulkiewicz, Richard, [528]
Condon, Anne E.,
[857]
Conrad, Michael,
[93]
Consonni, Viviana,
[785]
Conway, A.,
[982]
Conway, Daniel G.,
[613]
Coombs, David,
[790]
Coray, G.,
[176]
Corcoran, Arthur L., [165]
Corn, Robert M.,
[857]
Corno, Fulvio,
[105]
19
Corriou, J.-P.,
[261]
Cortez, P.,
[993, 1006]
Costa, Alberto,
[898]
Costa, D.,
[365]
Costa, Umberto S.,
[687, 688]
Cotta Porras, Carlos, [157]
Cotton, Fabrice,
[492]
Cowgill, Marcus Charles,[627]
Crabb, C.,
[662]
Craenen, B. G. W.,
[855]
Cranny, T.,
[116]
Crary, S. B.,
[250]
Crawford, Kelly D.,
[934, 678]
Crawford, S. L.,
[951]
Croix, Edward V. de St.,[79]
Crook, J. N.,
[613]
Cross, Andrew D. J., [294, 344]
Crozier, Stuart,
[798]
Crutchfield, James P.,
[19, 23, 35,
56, 62, 67, 72, 129, 140, 141]
Cui, Lizhi,
[567]
Curbelo Rodriguez, David, [444]
Curtis, Andrew,
[476]
Czґaraґn, Tamґas,
[39]
Czarnecki, D. A.,
[118]
Czarnecki, D.,
[126]
daBLSilva, Marcelo G., [51]
Dadfarnia, Shayessteh, [802]
Daemi, M. F.,
[57]
Dahule, Rahul K.,
[1025]
da Costa Filho, Paulo A., [833]
Da Silva Neto, Antonio Jose, [444]
Darwish, Hany W.,
[804]
Das, Arijit,
[38]
Das, Rajarshi, 662]
[62, 67, 72,
Das, Shiva K.,
[789]
Datta, Rituparna,
[745]
Davidson, Jennifer L., [828]
Davis, Lawrence,
[179]
Dґiaz Mun~iz, C.,
[812]
Dґiaz-Morcillo, Alejandro, [433]
Deb, Kalyanmoy, 585, 382]
[744, 745,
20
Genetic algorithms in mathematics and statistics
deBuse, J.,
[772]
Dґeharbe, David,
[687, 688]
Delay, F.,
[413]
De Barmon, B.,
[406]
de Cos Juez, F. J.,
[812]
De Falco, Ivanoe,
[475]
Delgado, Antonio,
[823]
De Garis, Hugo,
[96]
Della Cioppa, Antonio, [475]
Del Balio, R.,
[475]
Dell'Orto, Massimo, [260]
Delzell, Darcie A. P., [904]
Depczynski, U.,
[843]
Depczynski, Uwe,
[775, 846]
Dequn, Liang,
[474]
Desai, V. S.,
[613]
Deutsch, David,
[667]
Devogelaere, d.,
[776]
Devos, O.,
[788]
Devos, Olivier,
[799]
Dharma, Prisdha,
[1005]
Dhingra, Anoop K., [746]
Dhodhi, M. K.,
[22]
Dhodhi, Muhammad K., [343]
Diaz, J.,
[946]
Dickinson, John,
[359]
Ding, Yingqiang,
[808]
Ding, Yongsheng,
[124]
Diver, D. A.,
[638]
Djurisiґc, Aleksandra B., [614, 538]
Dogrusoz, Yesim Serinagaoglu, [448]
Dolin, Brad,
[780]
Donelli, Massimo,
[432]
Dorado, Julian,
[351]
Dorigo, Marco,
[169]
Dorne, RaphaЁel,
[869, 870, 873]
Dote, Y.,
[958]
Dougherty, William E., [844]
Douglas, I.,
[755]
Doye, Jonathan P. K., [900]
Drain, David Charles, [235]
Draney, Rodrick Kimball, [428]
Draper, D.,
[893]
Drechsler, Nicole,
[693]
Drechsler, R.,
[714]
Drechsler, Rolf,
[305, 691,
325, 720, 721, 704, 707]
Drias, Habiba,
[862, 865]
Driscoll, Michael A., [690]
Du, Haifeng,
[901]
Duan, Q. Y.,
[759]
Dumitrache, I.,
[618, 624]
Dumitrescu, D.,
[685]
Dun, Han,
[580, 582]
Dunworth, C.,
[600]
Duponchel, Ludovic, [799]
Durand, A.,
[788]
Dutilleux, Guillaume, [423]
Dutta, Anirban,
[697, 699]
D.Vetturi,
[878]
Dvorґak, Jirґi,
[272]
Dvorґak, Vaclav,
[722]
Ebara, H.,
[369]
Ebeling, Werner,
[352]
Ebendt, RuЁdiger,
[691, 698]
EbenhЁoh, Oliver,
[550]
Ebner, Marc,
[308]
Edelson, William,
[383]
Eden, Patrik,
[931]
Egbert, Stephen L.,
[1047]
Eglit, Jason T.,
[983]
Ehrenburg, Herman, [347]
Eiben, A. E.,
[855]
Eiben, Aґ goston E.,
[366, 882, 377]
Ekert, Artur,
[667]
Elazar, J. M.,
[538]
Elazar, Jovan M.,
[614]
El-Fakih, Khaled,
[832]
Elliman, D. G.,
[57]
Ellis, C.,
[393]
Eloranta, Timo,
[348, 354, 361]
Embrechts, M. J.,
[776]
Ennaciri, B.,
[477]
Enokizono, Masato, [457]
Eppley, Paul H.,
[335]
Ercal, Fikret,
[399]
Erickson, J. P.,
[418]
Erkut, Erhan,
[306]
Ershov, N. M.,
[540]
Esbensen, Henrik, 328, 338]
[312, 321,
Esposito, A.,
[754]
Essam, D.,
[781]
Esselaoui, D.,
[477]
Evans, D. J.,
[546]
Fadda, A.,
[522]
Falkenauer, Emanuel, [920]
Fan, Hui-Yuan,
[739]
Fan, Kuo-Chin, 342, 376]
[318, 336,
Fan, Mengbao,
[431]
Fang, Jianwen,
[797]
Fang, S.-C.,
[601]
Farina, M.,
[425]
Fehr, Gary,
[24]
Feiglin, Ariel,
[974]
Feldman, K.,
[596]
Feng, Yao-Ze,
[813]
Feng, Yixiong,
[561]
Feng, Yong-jiu,
[50]
Ferland, Jacques A., [874, 355, 170]
Fernandez-Parada, Nelson Josue, [49]
Ferno, Marten,
[931]
Ferreira, Tiago A. E., [51]
Festa, P.,
[569]
Feuring, T.,
[840, 845]
Fey, GЁorschwin,
[691]
Feyaerts, Maxim,
[811]
Finck, I.,
[519]
Fisher, Kristin,
[203]
Flasse, Stґephane P., [273]
Fleurent, Charles,
[874, 355, 170]
Flores-Mendez, A.,
[973]
Fogarty, Terence C., 792, 595, 123, 640]
[236, 238,
Fogel, D. B.,
[16]
Fogel, David B.,
[959, 592, 914]
Folino, Gianluigi,
[861, 202]
Authors
21
Fong, L. Y., Fonlupt, Cyril, Fonteix, C., Forouraghi, B., Foster, James A., Fotheringham, A. F., Fourie, P. C., Fouskakis, D., Franconi, Luisa, Frank, J., Frankowski, Jacek, Frayman, Y., Freeman, James, Freeman, L. C., Freeman, L. Michael, Freitas, Alex A., Freitas, Pedro, Freitas, P., Freschi, Fabio, Frommlet, Florian, Frost, V. J., Frutos, Anthony G., Fu, Bao, Fu, Zhiwei, Fujii, K., Fukuda, T., Fukushima, M., Fung, R. Y. K., Furdu, Iulian, Furtado, Jo~ao Carlos, Furuhashi, T., Furukawa, Tomonan, Furuya, H., Gadola, M., Gall, A. Le, Gallagher, N. B., Ganguly, Nilanjan, Ganguly, Niloy, Gao, Xiao-Zhi, Garcґia Nieto, P. J., Garcґia-Nieto, S., Garcia, M. E.,
[962] [783] [261, 279] [733] [359, 381] [251] [738] [893] [916] [872] [971] [426] [645] [649] [684] [197] [670] [669] [554] [906] [775, 836, 843] [857] [901] [206] [516] [524] [276] [619] [698] [380] [485] [461] [486] [878] [393] [817] [500] [38] [958] [812] [742] [894]
Garcia, S.,
[256]
Garcia-Raffi, L. M.,
[742]
Gargґia-Armengol, Juan, [559]
Gargano, Michael L., [383]
Garigliano, Roberto, [454]
Garis, Hugo de,
[59, 54, 63,
65, 66, 74, 686, 149, 150, 151]
Garnica, A. O.,
[76]
Garnica, O.,
[95]
Gavgani, Alireza Mazloumi, [448]
Gaylord, Richard J., [81]
Gayou, Olivier,
[789]
Geddes, K. O.,
[682, 683]
Geffroy, J. -C.,
[122]
Gemmill, D. D.,
[641]
Gen, Mitsuo, 177, 386]
[367, 173,
Geng, Wen,
[468]
George, R.,
[773]
Georgopoulos, E. F., [1001]
Gers, F.,
[96]
Gerstoft, Peter,
[464]
Gerstoft, P.,
[451]
Ghaboussi, Jamshid, [417]
Ghaboussi, J.,
[723]
Ghani, Sayeed Nurul, [268]
Ghasemi, Jahan B.,
[802]
Gheorghies, Ovidiu, [305]
Gholizadeh, Hamed, [209]
Gingras, D. F.,
[451]
Giraud-Moreau, L.,
[735]
Girault, Jean-Marc, [573]
Givens, Geof H.,
[930]
Glaser, H.,
[839]
Glover, Fred,
[586, 910, 270]
GЁockel, Nicole, 704, 707]
[720, 721,
Gokceoglu, C.,
[929]
Gokhale, Maya,
[552]
Goldberg, David E., [585, 642]
Goldberg, Robert,
[120]
Golden, Bruce,
[206]
Goldfarb, Heidi B.,
[927]
Gґomez, M.,
[896]
Gґomez, Susana,
[623]
Gґomez, T.,
[233]
Gґomez-Ramґirez, Eduardo, [973, 975]
Gґomez-Ramґirez, E., 1028]
[963, 1018,
Gong, Maoguo,
[901]
Gong, W.-B.,
[526]
Gonzґalez, Lupiґan~ez A., [842]
Gonzґalez-Yunes, A., [1018, 1028]
Goodacre, Royston, [822]
Gorez, R.,
[602]
Gottlieb, J.,
[880]
Gottvald, A.,
[479]
Gouzu, Hidetaka,
[856]
Govaerts, B.,
[921]
Grabec, I.,
[630]
Grand, Scott Michael Le, [764]
Green, David G.,
[69]
Greenhalgh, David,
[664]
Greenwell, R. N.,
[519]
Grefenstette, John J., [937, 130]
Grigorenko, Ilia,
[894]
Grocholewska-Czurylo, A., [82]
Groenwold, A. A.,
[738]
Groot, Claas de,
[760]
Guan, Jiabao,
[625]
Guan, Jihong,
[903]
Guan, Qiu,
[566]
Guanghua, Chunyan Li, [412]
Guchardi, R.,
[833]
Gucht, Dirk Van,
[766]
Gugliotta, Luis M.,
[447]
Guitart, P.,
[379]
Gulsen, M.,
[679]
Gunst, Richard F.,
[904]
Gunther, W.,
[714]
Guowei, He,
[990]
Gupta, S. S.,
[942]
Gupta, V. K.,
[759]
Gurusamy, G.,
[280]
Gusfield, D.,
[356]
Gutenschwager, K.,
[372]
22
Genetic algorithms in mathematics and statistics
Gutiґerrez, J. M.,
[968]
Gutiґerrez, Josґe M.,
[407]
Gutkowski, W.,
[732]
Gutowski, M. W.,
[590]
Gwee, B. H.,
[748, 395]
Hadaya, Nir,
[974]
Haftka, Raphael T., [726, 254]
Hagino, T.,
[275]
Hagiya, Masami,
[856, 375]
Haimes, Yacov Y.,
[940]
Haiping, Fang,
[990]
Hajela, Prabhat, 761, 762, 763]
[729, 756,
Hakkarainen, Juha,
[995]
Hakkarainen, T.,
[770, 771]
Haley, Robert W.,
[904]
HЁamaЁlЁainen, Matti,
[487]
Hamdoun, Abdellatif, [575]
Hammerman, Natalie, [120]
Han, Zhen,
[50]
Hanagandi, Vijay,
[285]
Hancock, Edwin R., [294, 301, 344]
Handa, H.,
[60]
Handley, Simon G.,
[322]
Haneda, H.,
[387]
Hani, Ahmad Fadzil M., [445]
Hanna, Darrin M.,
[205, 207]
Hansen, J. V.,
[824, 1020]
Hansen, James V.,
[1007]
Hansen, Pierre,
[898]
Hanson, James E.,
[67, 72, 129]
Hao, Jin-Kao, 873, 875]
[869, 870,
Happel, Robert,
[629]
Haraszti, T.,
[482]
Hari, K.C.,
[439]
Harish, P.,
[656]
Harmeling, Stefan,
[859]
Harrald, Paul,
[70]
Harris, Stephen P.,
[513]
Harrison, Leonard C., [510]
Harrison, R. F.,
[131]
Harrouni, K. El,
[477]
Hart, William Eugene, [262]
Hartmann, A. K.,
[947]
Harvey, Neal,
[552]
Harvey, R. J.,
[627]
Haskell, Richard E., [205, 207]
Haslinger, J.,
[749]
Hatjimihail, Aristides T., [935]
Hatjimihail, Theophanes T., [935]
Hatono, I.,
[158]
Hauw, J. K. van der, [882]
Hauw, J.K. van der, [366]
Hauw, Van Der,
[377]
Hayalioglu, M. S.,
[730, 736]
Hayashi, Y.,
[840, 845]
Haynes, Thomas,
[357]
Hayward, T. J.,
[455]
He, Min,
[810]
He, Ruichun,
[581]
He, Sailing,
[494]
He, Shiwei,
[309]
Heckendorn, Robert B., [884, 886, 887]
Heinrich, Reinhart,
[550]
HeitkЁotter, JЁorg,
[163]
Helmreich, Stefan,
[132]
Hemert, Van,
[377]
Hemmateenejad, Bahram, [796]
Henriques, Claudete B., [805]
Henry, Kevin,
[55]
Her, M.-G.,
[424]
Hermand, Jean-Pierre, [464]
Hernandez, Bruno,
[492]
Hernandez, Juan J., [563]
Hernґandez-Garcґia, Emilio, [953, 955]
Herrera, Francisco,
[533]
Herrera, Manuel,
[559]
Herrera Fernandez, Francisco, [444]
Herrero, J. Manuel,
[742]
Hertz, A.,
[365, 176]
Hewitt, Christopher J., [790]
Hiden, Hugo G.,
[944]
Hidrobo, F.,
[174]
Hifi, M.,
[368]
Higuchi, T.,
[297]
Hiltunen, Teri,
[969, 970]
Hirahara, A.,
[158]
Hirata, H.,
[68]
Hirayama, K.,
[547]
Hirschfeld, J. A.,
[907]
Ho, J. S.,
[395]
Hoai, Nguyen Xuan, [778, 781]
Hobbs, Matthew F., [291]
Hoelting, Cory J.,
[938]
Hoeting, Jennifer A., [930]
Hoffmann, Karl Heinz, [760]
Hogg, Tad,
[860]
HЁohn, Christian,
[330]
Holland, John H.,
[671, 133, 643]
Holm, Elizabeth A., [33, 42]
Holmes, C.,
[945]
Holt, B. R.,
[817]
Homaifar, Abdollah, [517]
Homma, N.,
[297]
Hong, L.,
[532]
Hong, X.,
[851]
Honma, Katsumi,
[1043]
Hoo, Teck L.,
[31]
Hopfinger, A. J.,
[932]
Horan, Michael A.,
[831]
Horihan, Jason W.,
[46]
Horng, Jorng-Tzong, 342, 376]
[318, 336,
Horsky, J.,
[465]
Horskyґ, J.,
[470]
Howell, M. N.,
[131]
Hraber, Peter T.,
[56, 140, 141]
Hsiao, M. S.,
[112]
Hsu, Ching-Chi,
[239]
Hu, Tao,
[497]
Hu, Yiyang,
[230]
Hua, Xia,
[828]
Huang, Jian-Hua,
[810]
Huang, Jun Steed,
[580, 582]
Huang, Pingjie,
[431]
Huang, Wenqing,
[568]
Huat, Tan Thiam,
[1003]
Authors
23
Hug, Hubert,
[863]
Hui, N. B.,
[740]
Hung, William N. N., [689, 690]
Hung, Y.-C.,
[424]
Hush, Noel,
[44]
Hussain, M. F.,
[345]
Hussein, Mahmoud I., [902]
Huvenne, J. P.,
[788]
Hwa, Er Meng,
[409]
HyЁotyniemi, Heikki, [1041]
Ida, K.,
[386]
Idkhajine, L.,
[577]
Iginizio, J.,
[769]
Ikesugi, E.,
[168]
Ikonen, E.,
[975]
Inagaki, Yoshiyuki,
[40]
Inayoshi, H.,
[314]
Ingber, Lester,
[644]
Inoue, K.,
[387]
Ip, A.,
[619]
Ireson, N. S.,
[595, 640]
Irizar Mesa, Mirtha, [444]
Isasi, P.,
[18]
Ishigame, A.,
[159]
Ishiguro, Akio,
[456, 508]
Itoh, H.,
[319]
Ivanissevich, M. L.,
[968]
Ivanissevich, Marґia L., [407]
Iwamura, K.,
[750]
Iwanow, Z.,
[732]
Iwasaki, Yuishi,
[84]
Izquierdo, Joaquґin,
[559]
Izrailev, Sergei,
[777]
Jackson, Matthew Edward, 241, 242]
[240,
Jain, D.,
[549]
Jakeman, Anthony J., [558]
Janakiraman, Janani, [146]
Janikow, Cesary Z., [219]
Janikow, Cezary Z., 218, 607, 646, 647]
[212, 215,
Janssen, M.,
[194]
JЁaske, Harri,
[994]
Jaszkiewicz, Andrzej, [153]
Jedelsky, D.,
[749]
Jefferson, Miles F.,
[831]
Jeffery, Gregory,
[24]
Jen, Lim Chong,
[409]
Jennison, Christopher, [916]
Jeong, Il-Kwon,
[534, 537]
Jesus, S. M.,
[484]
Jetter, Kurt,
[846]
Jiang, L.,
[548]
Jiang, Mingfeng,
[434, 798, 568]
Jiang, Ouyang Guotai, [412]
Jiang, Shanshan,
[568]
Jiang, Tianzi,
[546]
Jiang, Xiaoyi,
[299, 302]
Jiao, Licheng,
[901]
Jiao, Lijing,
[567]
Jimґenes-Morales, Francisco, [119]
Jimґenez-Morales, F., [35]
Jin, Lin-Ming,
[657, 403]
Jog, P. D.,
[520]
Jog, Prasanna,
[766]
Johnson, Cliff,
[868]
Johnson, Colin G.,
[782]
Johnson, Mark E.,
[612]
Johnsson, Mika,
[172]
Johnston, Iain G.,
[900]
Jones, Alun,
[822]
Jones, Matthew R.,
[458]
Jong, Kenneth A. De, [961, 889, 637]
Joung, Je-Gun,
[1027]
Joyce, Gerald F.,
[37]
Jozsa, Richard,
[667]
Juang, Jih-Gau,
[557]
Juillґe, Hugues,
[110, 115]
Junan, Yang,
[967]
Jung, Hsuan,
[899]
Jung, Soon Won,
[703]
Juґnior, Erinaldo L. Siqueira, [51]
Juodis, L.,
[924]
Kaasalainen, Mikko, [420]
Kaboudan, M. A.,
[847]
Kadiyala, Akhil,
[809]
Kadluczka, P.,
[331]
Kahlert, JЁorg,
[263]
Kajisha, H.,
[21]
Kalderstam, Jonas,
[931]
Kalganova, Tatiana, [171]
Kalles, D.,
[201]
Kalro, Naveen P.,
[578]
Kamarulzaman, Hamzah, [743]
Kamath, Chandrika, [199, 200]
Kanesige, K.,
[387]
Kang, Lishan,
[1023]
Kang, Yujung,
[795]
Kannan, K.,
[564]
Kao, Cheng-Yan,
[189]
Kao, Ming-Hung,
[897]
Kapsalis, A.,
[394]
Karapoulios, K.,
[393]
Karathanassi, Vassilia, [815]
Karavas, Vassilios N., [928]
Karkoub, M.,
[424]
Karp, R.,
[356]
Karpouzos, D. K.,
[413]
Karppinen, Ari,
[969, 970]
Karr, Charles L.,
[676, 819, 684]
Katsifarakis, K. L.,
[413]
Katsikas, S.,
[393]
Kauffman, Stuart A., [134, 135]
Kaur, Devinder,
[809]
Kavian, M.,
[682]
Kawai, H.,
[547]
Kawamoto, S.,
[159]
Kawamura, H.,
[734]
Kazmierski, T. J.,
[555]
Keane, Martin A.,
[91]
Keijzer, Maarten,
[784]
Keim, Martin,
[705]
Kell, Douglas B.,
[822]
Kelly, P.,
[526]
Kemsley, E. Katherine, [790]
Kennard, D'ondria L., [231]
Kennedy, H. C.,
[220]
Kennett, Brian L. N., [450]
24
Genetic algorithms in mathematics and statistics
Kepner, M.,
[194]
Kerszberg, M.,
[127, 128]
Kesten, Christopher, [243]
Khabzaoui, Mohamed, [862]
Khader, Ahamad Tajudin, [743]
Khamlich, Salah Eddine, [575]
Khan, Mozammel H. A., [794]
Kheibar, Navid,
[696]
Khuri, Sami,
[152, 163]
Khwaja, A. A.,
[480]
Kiga, Daisuke,
[856]
Kim, Chulhyun,
[1012]
Kim, Daijin,
[1004, 1012]
Kim, Hajoong,
[103]
Kim, J. R.,
[386]
Kim, Kyoung Min,
[224]
Kim, Young Min,
[806]
Kimura, Takashi,
[1039]
King, I.,
[286]
Kingdon, J.,
[596]
Kinjo, H.,
[1008]
Kishimoto, M.,
[466]
Kitaoka, Masatoshi, [1021]
Kito, N.,
[734]
KjellstrЁom, Gregor,
[626, 292]
Klepikov, V. F.,
[98]
Klimasauskas, Casimir C., [1035]
Knight, James,
[429]
Koґacs, Szabolcs,
[167]
Kobayashi, Shigenobu, [216]
Kobayashi, S.,
[217]
Kobler, D.,
[176]
Koehler, G. J.,
[588]
Koh, A. L. G.,
[871]
KЁohler, H. M.,
[648]
Koishi, T.,
[121]
Koivisto, Hannu,
[793, 998]
Koivisto, PЁaivi,
[430]
Koivo, Heikki N.,
[1041]
Kojima, F.,
[415]
Kokol, P.,
[223]
Kolehmainen, Mikko, [969, 970]
Kolen, Antoon,
[589, 182]
Kolodziejczyk, J.,
[192]
Komai, Kenjiro,
[296]
Komiya, Ken,
[856]
Kondacs, Attila,
[92]
Kong, Bo,
[810]
Koper, K. D.,
[418]
KЁoppen, Mario,
[304]
Korda, V. Yu.,
[98]
Korkin, Michael,
[24]
Korkin, M.,
[96]
Kornienko, Yury,
[222]
Kovacs, B.,
[727]
Kowalczuk, Z.,
[545]
Kowar, Thomas R.,
[257]
Koza, John R., 226]
[911, 78, 91,
Kral, J.,
[460]
Kratica, Josef,
[864]
Krawczyk, Jacek R., [646]
Krejsa, Jirґi,
[470]
Krejsa, J.,
[465]
Kreutz, Martin,
[1033, 848]
Krieger, R.,
[705]
Kristiansen, Ulf R.,
[423]
Krivyґ, I.,
[1031]
Kroese, D. P.,
[529]
Kubinyi, Hugo,
[825]
Kubota, N.,
[415, 524]
KuЁhne, Ulrich,
[693]
Kuijpers, Cindy M. H., [917]
Kukkonen, Jaakko,
[970]
Kulkarni, B. D.,
[1025]
Kulkarni, S. V.,
[439]
Kumar, Ashok,
[809]
Kumar, K.,
[1022]
Kumar, R.,
[549]
Kumskov, K. I.,
[370]
Kundu, Malay K.,
[656]
Kundu, S.,
[121]
Kuntz, Pascale,
[388]
Kuonen, P.,
[176]
Kuri-Morales, Angel, [52]
Kurka, Petr,
[136]
Kuroda, K.,
[471]
Kurokawa, Haruhisa, [307]
Kurzawe, Frank,
[264]
Kvasnicka, V.,
[543]
Kvasnicka, Vladimґir, [371]
Kwon, Kihwan,
[795]
Kwon, Soon-Hak,
[991]
Kwong, C. K.,
[792]
Kwong, S.,
[269]
KyngЁas, Jari,
[995]
Labunets, Valeri G., [13]
Lafon, P.,
[735]
Lai, H. Y.,
[517]
Laing, R. A,
[133]
Lam, Hong Yoong,
[743]
Lampinen, Jouni,
[739, 503]
Lanchares, J.,
[76, 95]
Land, Walker,
[837]
Lane, Alex,
[187]
Lange, Brigitta,
[677]
Lankhorst, Marc M., [71]
Larran~aga, Pedro,
[917]
Laszewski, Gregor von, [397, 401]
Latorre, Jesuґs Marґia, [186]
Laudato, Matthew,
[915]
Layeb, Abdesslem,
[695]
Leardi, Riccardo,
[819, 842]
Lebl, Karin,
[980]
Leblanc, B.,
[94, 99]
Lee, B. H.,
[746]
Lee, Byong Whi,
[1040]
Lee, Byung Jin,
[224]
Lee, Chae Y.,
[341]
Lee, Charles,
[207]
Lee, Dong Gyu,
[1040]
Lee, Dong-Wook,
[1017]
Lee, J. K.,
[419]
Lee, Jian-Der,
[515]
Lee, Ju-Jang,
[534, 537]
Lee, Jungsul,
[795]
Lee, K.-H.,
[225]
Authors
25
Lee, Minna,
[694]
Lee, S.,
[817]
Lee, T. C. S.,
[871]
Leigh, William,
[1038]
Lele, Shreevardhan,
[206]
Lenaerts, T.,
[718]
Lenders, Wolfgang,
[692]
Lenox, Michael J.,
[940]
Lent, Craig S.,
[29]
Leung, Henry,
[1036, 965]
Leung, Kwong Sak,
[286]
Leung, Yee,
[779]
Levin, Michael,
[511]
Levine, David Mark, [161]
Levitan, B. S.,
[849]
Levy-Drummer, Rachel S., [974]
Lewis, Paul S.,
[452, 506]
Leyman, A. Rahim, [409]
Li, Can,
[791]
Li, H. Y.,
[478]
Li, Jiaqi,
[1021]
Li, Ping,
[205]
Li, W.,
[441]
Li, X. J.,
[542]
Li, X. Y.,
[719]
Li, Xiaodong,
[546]
Li, Y.,
[303]
Li, Yongxin,
[791]
Li, Yuanqian,
[791]
Li, Zhongkai,
[561]
Liang, Ko-Hsin,
[290]
Liang, Yi-Zeng,
[810]
Liangyue, Cao,
[990]
Liepins, Gunar E.,
[659]
Likothanassis, S. D., [1001]
Lim, M. H.,
[395]
Lim, Meng-Hiot,
[748]
Lin, Chia-Yang,
[234]
Lin, Chyi-Yeu,
[761, 762, 763]
Lin, Feng-Tse,
[189]
Lin, Jie,
[989]
Lin, Jin-Ling,
[180]
Lin, Jin-Mu,
[609]
Lin, Jinn,
[239, 576]
Lin, Qihua,
[904]
Lin, Ren-Wei,
[557]
Lin, Wen-Yang,
[512]
Lindgren, Kristian,
[137]
Ling, Steve S. H.,
[801]
Lint, J. H. van,
[631]
Lipsanen, H.,
[770, 771]
Lipsitch, Marc,
[138]
Lipton, R. J.,
[600]
Liu, Baoding,
[750, 527, 615]
Liu, B.,
[726]
Liu, Cheng-Wen,
[336, 342]
Liu, Feng,
[798]
Liu, Fung-Bao,
[440]
Liu, Guoqiu,
[493]
Liu, Qinghua,
[857]
Liu, Wen-Kai,
[557]
Liu, Xiaohui,
[1032]
Liu, Xinghao,
[373]
Liu, Yan-De,
[803]
Liu, Yan,
[50]
Liu, Yong,
[1013, 622]
Livesay, M.,
[349]
Ljubic, Ivana,
[906]
Llanes-Santiago, Orestes, [444]
Lohbeck, T. K.,
[765]
Lohn, Jason D.,
[97]
Lґopez, Cristґobal,
[953, 955]
LЁorincz, Andrґas,
[167]
Louchet, Jean,
[443]
Louis, Ard A.,
[900]
Louis, S. J.,
[499]
LЁowe, Matthias,
[523]
L.Pitsoulis,
[166]
Lu, Bi-Hui,
[814]
Lu, Hong-Bing,
[810]
Lu, Yong,
[497]
Lu, Yung-Hsiang,
[46]
Lucas, Sam B.,
[831]
Lucas, Simon M.,
[45]
Luchian, Henri,
[327]
Luigi, Fabio De,
[142]
Lunacek, Monte,
[429]
Luo, X.,
[647]
Lustfeld, H.,
[907]
Lutton, E.,
[99]
Lutton, Eґvelyne,
[446]
Lutton, Evelyne, 505]
[94, 498, 504,
Lutton, Pierre,
[498]
Lybanon, M.,
[774]
Lynch, Lucy A.,
[915]
Lyou, Kyoung,
[224]
Ma, Changxi,
[581]
Ma, Jiang-Hong,
[779]
Ma, Li Zhuang,
[230]
Macchiavello, Chiara, [667]
Machado, J.,
[993]
Macready, W. G.,
[849]
Madhavan, Radhika, [1048]
Maeda, H.,
[369]
Maffioli, F.,
[169]
Magdalena, Luis,
[533]
Maggini, Valentina,
[208]
Magyar, Gaґbor,
[172]
Maini, Harpal Singh, [326]
Maity, Damodar,
[438]
Maji, Pradipta,
[38]
Mak, K. L.,
[751]
Makariunas, K.,
[924]
MЁakelЁa, M. M.,
[737]
MЁakinen, Erkki, 518, 361]
[295, 313,
MЁakinen, J.,
[737]
Mallick, B.,
[945]
Malumbres, L.,
[539]
Malyutina, E. E.,
[535]
Man, K. F.,
[269]
Mandal, Abhyuday,
[897]
Manderick, B.,
[314, 718]
Mandrille, A.,
[279]
Mangano, Salvatore R., [315]
Mangel, M.,
[650]
26
Genetic algorithms in mathematics and statistics
Maniezzo, Vittorio,
[169, 142]
Mansour, Nashat,
[832]
Mantere, Timo,
[48]
Manzo, L.,
[878]
Marc, I.,
[261, 279]
Marcelin, J. L.,
[747]
Marchand, C.,
[610]
Marchette, D. J.,
[821]
Marchiori, E.,
[855, 885]
Marconi, J.,
[381]
Marjoram, Paul,
[899]
Marks, Lawrence B., [789]
Marshall, Stephen,
[664]
Marsily, G. de,
[413]
Martinez, A. S.,
[1042]
Martini, Anna,
[432]
Martґinez-Meyer, Enrique, [1047]
Maruyama, Tsutomu, [398]
Maslov, S. Yu.,
[651, 652]
Massa, Andrea,
[432]
Massart, Dґesirґe-Liuc, [676, 819]
Masters, Timothy,
[837]
Masui, Toshiyuki,
[324]
Matsubara, Y.,
[232]
Matsumoto, Shunji,
[1044, 1034]
Matsushita, S.,
[485]
Matthews, R. A. J., [193]
Mattila, M.,
[770, 771]
Mauri, Andrea,
[785]
Mavridou, T.,
[166]
Mayer, H. A.,
[1019]
Mayer, M. K.,
[628]
Mayer, Matthias,
[332, 399, 400]
Mazumder, Pinaki,
[321, 329]
Mazumder, P.,
[320]
Mazzanti, Ferran,
[954]
McCormick, Vance E., [517]
McDonald, J. B.,
[1020]
McDonnell, John R., [987, 933, 949]
McIntosh, S. W.,
[410]
McIntosh, S.,
[502]
McKay, Ben,
[818]
McKay, R. I.,
[781]
McKeown, K. R.,
[211]
McLenaghan, R. G., [682, 683]
McLeod, Georgina,
[790]
Mehrbakhsh, Arman, [696]
Melssen, W. J.,
[787]
Mendoёca, P. R. S.,
[191]
Mendonca, P. R. S., [190]
Menigot, Sebastien,
[573]
Merz, Jr., K. M.,
[764]
Meservy, R. D.,
[824]
Messa, K.,
[774]
Meyer, Thomas Patrick, [1030]
Meyer, T.,
[1029]
Michael, A. J.,
[422]
Michalewicz, M.,
[530]
Michalewicz, Zbigniew, 530, 646, 922]
[912, 337,
Middendorf, Martin, [111]
Miescke, K. J.,
[942]
Miften, Moyed,
[789]
Mikkola, Topi,
[298]
Miller, J.,
[192]
Miller, John H.,
[83]
Miller, Julian F.,
[75, 123]
Milosnoviґc,
[864]
Ming, Li-Tien,
[673]
Minoshima, K.,
[296]
Miodownik, Mark A., [33, 42]
Mital, D. P.,
[1003, 1024]
Mitchell, Melanie,
[23, 35, 56,
62, 67, 72, 140, 141]
Mityushev, D. F.,
[370]
Miyahara, Yutaka,
[1034]
Mjolsness, Eric,
[632]
Moeinzadeh, Hossein, [696]
Moghadampour, Ghodrat, [15]
Mohammadi, Mehdi, [696]
Mohan, M. Murali,
[680]
Moilanen, Atte,
[255]
Mojaradi, Barat,
[209]
Molina, J. M.,
[18]
Molt, K., 843, 846]
[775, 836,
Monmasson, E.,
[577]
Montague, Gary A., [944]
Montalvo, Idel,
[559]
Monzґo-Cabrera, Juan, [433]
Moon, Byung-Ro,
[316, 360]
Moore, Cristopher,
[19]
Morales-Aguirre, Marco, [52]
Moreira, Anamaria M., [687, 688]
Morris, Robert,
[358]
Morss, L.,
[220]
Mort, N.,
[1002]
Mosher, John C.,
[452, 506]
Mosley, M.,
[841]
Mozayani, Nasser,
[696]
M.Pardalos, Panos,
[166]
MuЁhlenbein, Heinz,
[401, 181]
Mukarramuddin, Khaja, [680]
Mulawka, J. J.,
[708, 711]
Mulawka, Jan J.,
[283]
Mulet, Oriol,
[954]
Mulloy, Brian S.,
[996]
Munetomi, Masaharu, [86]
Munetomo, Masaharu, [89]
MuЁnger, Andreas,
[299, 302]
Murata, Satoshi,
[307]
Murga, R. H.,
[917]
Murgu, Alexandru,
[997]
Murru, A.,
[964]
Murty, M. Narasimha, [599]
Musil, M.,
[495]
Myers, Richard,
[294, 301]
Nabi, M.,
[439]
Nachbar,
[597]
Nagamachi, M.,
[232]
Nagano, Shinobu,
[84]
Naguib, Ibrahim A., [804]
Najim, K.,
[975]
Nakamura, Masayuki, [453]
Nakano, H.,
[369]
Nakazono, K.,
[1008]
Nandi, Sisir,
[800]
Narasimhan, Shankar, [382]
Authors
27
Nashat, Mansour,
[830]
Nath, Sankar Kumar, [500]
Nebro, Antonio,
[157]
Nelson, B.,
[194]
Nelson, R. D.,
[1020]
Nelson, Ray D.,
[1007]
Nettleton, David John, [454, 463]
Neumaier, Arnold,
[668]
Neumann, Avidan U., [974]
Neumann, John von, [143]
Nevalainen, Olli,
[172]
Neves, F. A.,
[414]
Neves, J.,
[993, 1006]
Newton, C.,
[290]
Ng, A. C. L.,
[269]
Ngo, J. Thomas,
[293]
Ngom, L.,
[122]
Nguyen, Hung T.,
[801]
Nguyen Bui, Thang, [323]
Nicholis, Thomas E., [237]
Nickolay, Bertram,
[304]
NiemЁoller, A.,
[846]
Niklaus, J.,
[767]
Nikolaev, N. I.,
[221]
Nikolaou, Michael,
[285]
Nikolopoulos, C.,
[349]
Nikolopoulos, P.,
[349]
Nishidate, Kazume,
[81]
Niska, Harri,
[969, 970]
Nissinen, Ari S., 1041]
[984, 998,
Nix, Allen E.,
[660]
Nizami, J. S.,
[345]
Noble, Ian R.,
[636]
Nonaka, T.,
[620]
Nordahl, Mats G.,
[137]
Nordin, Peter,
[829]
NordstrЁom, Tony,
[402]
Norton, John P.,
[558]
Nowrouzian, Behrouz, [358]
Nugroho, Hermawan, [445]
Numata, M.,
[1026]
Oakley, E. H. N.,
[988]
Obayashi, Shigeru,
[459]
Ocenasek, Jiri,
[154]
Ochiai, S.,
[620]
Ochoa, A.,
[378]
Oda, J.,
[121]
Odejobi, Odetunji A., [560]
Ogihara, Mitsunori, [858]
Ognjanoviґc, Zoran,
[864]
Oh, Kyong Joo,
[806]
Ohlsson, Mattias,
[931]
Ohmori, H.,
[734]
Ohno-Machado, L.,
[850]
Ohtani, S.,
[486]
Okamoto, M.,
[620]
Okmen, C.,
[705]
Oksanen, A.,
[741]
Oliveira, Pedro Paulo Balbi de, [144]
Olmer, Markus,
[829]
Oltean, M.,
[685]
O'Neill, Erin,
[31]
Oommen, B. John,
[79]
Orfila, A.,
[960]
Orlin, James B.,
[362]
Ortega, Maruja F.,
[350]
Ortega-Huerta, Miguel, [1047]
Ortega-Sanchez, Cesar, [20]
Orvosh, David,
[179]
Osmane, Ibrahim,
[562]
Osmera, Pavel,
[681]
OЁ sterg°ard, Patric,
[162]
Ouazar, Driss,
[477]
Oudenhuijzen, M.,
[787]
Oumoun, M.,
[279]
Ouyang, Ai-Guo,
[803]
Ovaska, Seppo J.,
[958]
Overstreet, G. A.,
[613]
Ozdemir, D.,
[841]
OЁ zyildirim, S.,
[606]
Packard, Norman H., [145, 1029]
Pai, G. A. Vijayalakshmi, [834]
Pal, Sankar K.,
[656]
Pamplin, Trenton L., [936]
Pan, Fuquan,
[581]
Pan, Zhongliang,
[700]
Pan, Zhong-Xiao,
[390]
Pantano, Pietro,
[28]
Panyaworayan, Witthaya, [1037]
Papagelis, A.,
[201]
Parda, David S.,
[789]
Paris, Grґegory,
[783]
Park, Cheol Hoon,
[462]
Park, Gwi Tae,
[224]
Park, Gwi-Tae,
[703]
Park, Inhag,
[103]
Park, Joonhong,
[806]
Park, Kihong, 339, 396]
[311, 876,
Park, Lae-Jeong,
[462]
Park, Taehoon,
[341]
Parsons, M. D.,
[933]
Parsons, Rebecca J., [612]
Pasquini, C.,
[833]
Passaro, Alessandro, [208]
Pastorino, Matteo,
[411, 432]
Patel, J. H.,
[112]
Patikova, B.,
[465]
Pavan, Manuela,
[785]
Pavlickova, J.,
[838]
Pazhoumand-dar, Hossein, [696]
Pazos, Alejandro,
[351]
Peco, J.,
[233]
Pedroso, Jo~ao Pedro, [271, 277]
Pedrycz, Witold,
[204]
Pendleton, Neil,
[831]
Pendock, Neil,
[507]
Peng, Dan,
[808]
Peng, Z.,
[422]
Pereira, C. M. N.,
[1042]
Perkins, Simon,
[552]
Perrin, E.,
[279]
Pesch, Erwin,
[589, 182]
Peterson, A. Townsend, [1047]
Petit, J.,
[946]
Phillips, P.,
[192]
28
Genetic algorithms in mathematics and statistics
Pieczara, J.,
[725]
Piggott, P.,
[333]
Pilvin, P.,
[436]
Pinebrook, W. E.,
[653]
Pinto, Ricardo L. U. F., [288]
Pippinger, Nicholas, [665]
Pirkul, Hasan,
[317]
Pizzi, Niccolino J.,
[204]
Pizzuti, Clara,
[861, 202]
Plassman, G. E.,
[728]
Plukis, A.,
[924]
Podforelec, V.,
[223]
Pokornyґ, Miroslav,
[681]
Poli, Irene,
[979]
Pollack, Jordan B.,
[110, 115]
Poon, Josiah,
[567]
Poon, Simon,
[567]
Popela, Pavel,
[272]
Poppi, Ronei J.,
[805, 833]
Poranen, Timo,
[295, 310]
Porter, Reid,
[552, 125]
Portnov, Dmitriy,
[860]
Pospґichal, Jirґi,
[371]
Pospichal, J.,
[543]
Potocnik, P.,
[630]
Poulter, Graham,
[790]
Poza, M.,
[917]
Pratihar, D. K.,
[740]
Preis, K.,
[663]
Price, Kenneth,
[752]
Priestley, Keith,
[414]
Prinetto, Paolo,
[105]
Prins, Christian,
[514]
Progias, Pavlos,
[570]
Protopapas, Mattheos K., [976, 977, 978, 905]
Psycharis, P.,
[946]
Puigjaner, Luis,
[823]
Pulido, J. A. Gomez, [715]
Pulkkinen, Pietari,
[793]
Pullammanappallil, S., [499]
Purvis, Russell,
[1038]
Qian, Fei,
[68]
Qian, Z.,
[441]
Qiu, Min,
[611]
Qu, Lingli,
[791]
Querin, O. M.,
[731]
Quinlan, J. R.,
[227, 228]
Ra, Jung Woong,
[462]
Rabelo, L.,
[877]
Rabinowitz, F. M.,
[521]
Radcliffe, Nicholas J., [593, 17]
Raghavan, S.,
[206]
Ragusa, James M.,
[1038]
Rahman, M. O.,
[480]
Raich, A. M.,
[723]
Raja Balachandar, S., [564]
Rajan, E. G.,
[680]
Rajasekaran, S.,
[834]
Rakic, A. D.,
[614, 538]
Ram, B. R.,
[599]
Ramillien, Guillaume, [416]
Ramґirez, Eduardo Gґomez, [954]
Ramu, Nettem,
[280]
Rana, Soraya, 886, 887]
[884, 883,
Rani, S. Subha,
[280]
RantamЁaki, Minna,
[970]
Rao, P. Madhusudana, [680]
Rao, S. S.,
[1015]
Rao, Sathyanarayan S., [999]
Rao, Vasant B.,
[184]
Rapoport, Benjamin I., [1048]
Ratilal, P.,
[483]
Rattray, L. Magnus, [525]
Rattray, Magnus,
[603]
Rauch, E. M.,
[34]
Raudenskyґ, Miroslav, [460, 465, 470]
Ray, Animesh,
[858]
Raynal, Frґedґeric,
[498]
Rayward-Smith, Vic J., [772, 394]
Rees, Peter,
[102]
Reeves, Colin R., 330, 247, 258]
[244, 246,
Reformat, Marek,
[204]
Reggia, James A.,
[97]
Reid, D. J.,
[605, 617]
Reidys, Christian M., [666]
Reif, John H.,
[866]
Reimetz, Anja M.,
[848]
Remeikis, V.,
[924]
Remortel, P. van,
[718]
Renders, Jean-Michel, [273]
Renyuan, Tang,
[468]
Repetto, Maurizio,
[554]
Requena-Pґerez, Maria E., [433]
Resende, M.G. C.,
[166]
Rezaee, Alireza,
[556]
Rhyne, Robert D.,
[203]
Ricardo, P. M. Ferreira, [288]
Rieffel, Eleanor G.,
[780]
Riera, Margalida,
[953]
Righini, G.,
[169]
Rijkaert, M.,
[776]
Riolo, Rick L.,
[996]
Risvik, K. M.,
[489]
Risvik, Knut Magne, [491]
Rivera-Gallego, Wilson, [621]
Robillard, Denis,
[783]
Robinson, C.,
[1002]
Rodriguez, A. O.,
[340]
Rogers, David,
[932, 943]
Roig, Josґe V.,
[559]
Rolf, S.,
[1009]
Rolfe, B. F.,
[426]
Roli, F.,
[964]
Rolland, Erik,
[317]
Ro Moon, Byung,
[323]
Rolnik, Vanessa P.,
[435]
Romero, David,
[623]
Romero-Garcґia, Vicent, [742]
Roohafza, Hamidreza, [571]
Rґios, J.,
[539]
Rosani, Andrea,
[432]
Rosґe, Helge,
[352]
Rosen, Bruce,
[644]
Rosenberg, R. S.,
[654, 655]
Rosete, A.,
[378]
Authors
Rossi, C.,
[885]
Rothemund, Paul W. K., [868]
Roupec, Jan,
[926]
Roure, D. De,
[839]
Rowland, Jem J.,
[822]
Rubel, Franz,
[980]
Rubin, F.,
[188]
Rubinacci, Guglielmo, [408]
Ruckebusch, C.,
[788]
Rudd, J. R.,
[852]
Rudnick, E. M.,
[112]
Rudolph, GuЁnter,
[87]
Ruiz, Duncan D.,
[210]
Rundblad-Labunets, Ekaterina V., [13]
Ruppin, Eytan,
[106]
Russenschuck, S.,
[469, 490]
Ruuskanen, Juhani,
[969, 970]
Rydygier, E.,
[481]
Saab, Youssef G.,
[184]
Saario, Ari,
[741]
Saavedra, A.,
[623]
Sadeghi, Masoumeh, [571]
Saeidi, P.,
[918]
Safadi, R. B.,
[950]
Sahoo, Bishweswar,
[438]
Sahota, P.,
[57]
Saidouni, Djamel-Eddine, [695]
Saito, T.,
[21]
Sakamoto, Akio,
[373]
Sakamoto, Kensaku, [856]
Sakasai, K.,
[466]
Saleh, Kassam A.,
[343]
Salhi, A.,
[839]
Sali, Rasoul,
[571]
Salmelin, Riitta,
[487]
Salmi, Tapio,
[565]
Sambridge, Malcolm S., [450, 496, 501]
Sanchez, J. M.,
[76, 95, 715]
Sanchez, Rubal P.,
[921]
Sґanchez Lasheras, F., [812]
Sґanchez-Pґerez, J. Vicente, [742]
Sґanchez-Uґ beda, E. F., [233]
Sanchis, A.,
[18]
Sandholm, Tuomas, [405]
Sanjeevan, K.,
[823]
Sano, Chiharu,
[229]
Santos, Antonino,
[351]
Sanz-Argent, Josep, [563]
Sapin, Emmanuel,
[43]
Sarkhosh, Maryam,
[802]
Sarrafzadegan, Nizal, [571]
Sathyanarayan, S. Rao, [1046]
Sato, Yoshiharu,
[86, 89]
Savage, Jesus,
[52]
Savage, Rodrigo,
[52]
Savickyґ, Petr,
[706]
Savit, Robert S.,
[996]
Sawionek, B.,
[389]
Sayama, H.,
[34]
SchaЁfer, Simon,
[674]
Scheraga, Harold A., [287]
Scheuring, Istvaґn,
[39]
Schiemangk, C.,
[404]
Schirru, R.,
[1042]
Schmeck, Hartmut,
[364]
Schmidt, V.,
[529]
Schneider, D.,
[116]
Schneider, Frerk,
[111]
Schoemig, Veronika, [243]
Schoenauer, Marc,
[498]
Schoenaur, Marc,
[522]
Schoenefeld, Dale A., [938, 357]
Schonbach, C.,
[510]
Schrodt, P. A.,
[658]
Schucany, William R., [904]
Schuler, Rainer,
[863]
Schulz, Stephan,
[674]
Schwaiger, R.,
[1019]
Schwarz, Josef,
[154]
Schwehm, Markus,
[281]
Schweitzer, Frank,
[352]
Scott, E. P.,
[256]
Scotti, M. V.,
[716]
29
Scrucca, Luca,
[908]
Seda, Milos,
[334, 353]
Seelen, Werner von, [848]
Seki, H.,
[319]
Seleghim, Paulo,
[435]
Sen, Sandip,
[146]
Sen, S.,
[929]
Sen, Sujoy,
[382]
Sendhoff, Bernhard, [1033, 848]
Sen Gupta, Indranil, [509]
Senthilnath, J.,
[578]
Seredynґski, Franciszek, [36, 41, 113]
Serna, M.,
[946]
Sezer, E. A.,
[929]
Sgall, J.,
[600]
Sgard, Franck C.,
[423]
Shabani, Ali Mohammad Haji, [802]
Shafer, David,
[265]
Shaffer, Ronald E.,
[820, 826]
Shalom, David H.,
[974]
Shamsipur, Mojtaba, [796]
Shamsudin, Norashikin, [445]
Shan, Ying-Jie,
[814]
Shanahan, M.,
[64]
Shang, Yi,
[274]
Shao, Shihuang,
[124]
Shao, Xue-Guang,
[390]
Shapiro, Jonathan L., [603]
Shapiro, Jonathan,
[525]
Sharp, David H.,
[632]
Shavandi, Hassan,
[571]
Sheehan, N.,
[608]
Shen, Y.,
[248, 939]
Shen, Zhang-Quan,
[814]
Sheta, A. F.,
[1045]
Sheta, Alaa F.,
[961]
Shimamoto, Takashi, [373]
Shimizu, K.,
[275]
Shimojima, K.,
[524]
Shirai, H.,
[159]
Shirasaka, M.,
[717]
Shiyou, Yang,
[468]
Shonkwiler, Ronald, [266]
30
Genetic algorithms in mathematics and statistics
Shou, Guofa,
[434, 798]
Siarry, Patrick,
[406]
Siegel, E. V.,
[211]
Sieranta, Mika,
[313, 518]
Sikdar, Biplab K.,
[38]
Sim, Kwee Bo,
[1017]
Simonґik, Ivan,
[681]
Singh, Montek,
[374]
Singh, S. C.,
[414]
Singh, Sanjiv Kumar, [500]
Sipper, Moshe,
[85, 88, 90,
100, 106, 107, 108, 109]
Sirakoulis, Georgios Ch., [570]
Sirjani, Marjan,
[47]
Siwak, P.,
[82, 101]
Siyam, Nedal W. A., [437]
Skaar, Johannes,
[491]
Skaar, J.,
[489]
Sklansky, Jack,
[214]
Skourlas, C.,
[393]
Skowronski, K.,
[708, 711]
Slama, L.,
[465]
Slґama, Lubormґir,
[470]
Slavov, V.,
[221]
Small, Gary W.,
[820, 826]
Smeyers-Verbeke, J., [819]
Smith, A. E.,
[156, 679]
Smith, Alice E.,
[591]
Smith, George D.,
[394]
Smith, James F.,
[203]
Smith, Lloyd M.,
[857]
Smith, Peter,
[879]
Smith, R. G.,
[134, 135]
Snieder, Roel,
[476]
Snyers, Dominique,
[388]
Sobieszczanski-Sobieski, J., [728]
Sole, I.,
[823]
Soler, J. Ramґon,
[186]
Solka, J. L.,
[821]
Soltani, S.,
[1018, 1028]
Song, In-Soo,
[289]
Song, Xiaoyu,
[689, 690]
Sonza Reorda, Matteo, [105]
Sopta, L.,
[544]
Sormunen, J.,
[770, 771]
Sorooshian, S.,
[759]
Sotiropoulos, D. G., [282]
Soto, I.,
[14]
Soule, Terence,
[359]
Spears, William M., [889, 637, 890]
Spence, Jeffrey S.,
[904]
Spera, C.,
[250]
Spezzano, Giandomenico, [861, 202]
Spillman, Richard,
[194, 195]
Sprave, Joachim,
[1009]
Srikanth, R.,
[773]
Srivastava, Soumil,
[744]
Stadler, Peter F.,
[666, 604, 629]
Stateczny, A.,
[531]
Stavropoulos, E. C., [282]
Steenbeek, A. G.,
[855]
Stelling, P.,
[356]
Sten, Johan,
[430]
Steven, G. P.,
[731]
Stockwell, David R. B., [636]
Storn, Rainer,
[752]
Strand, Carina,
[931]
Strechen, Natalia,
[171]
Strohmaier, A.,
[881]
Stubberud, Peter A., [240, 241]
Stufken, John,
[897]
Stump, R. Zhou abd B. W., [421]
Suarez, A. R.,
[340]
Suarez, A.,
[350]
Subramanian, K. R., [337]
Subramanian, S.,
[391]
Suchomski, P.,
[545]
Sudarbo, H.,
[827]
Sudjianto, Agus,
[816, 827]
Suezaki, T.,
[296]
Sugata, H.,
[275]
Sugawara, K.,
[1026]
Sugeno, Michio,
[991]
Sugihara, Kazuo,
[253]
Sugisaka, M.,
[542]
Sugiyama, T.,
[319]
Suh, Jung Y.,
[766]
Sumi, K.,
[369]
Sun, Da-Wen,
[813]
Sun, Ne-Zheng,
[427]
Sun, Wei,
[494]
Suominen, Petteri,
[565]
Suraweera, F.,
[333]
Suyama, Masanori Arita Akira, [375]
Suzuki, Y.,
[471]
Swamy, V. V. N.,
[680]
Swiёecicka, Anna,
[36]
Sґwiёecicka, Anna,
[113]
Swift, Stephen,
[1032]
Sykas, Dimitris,
[815]
Szabo, F. J.,
[727]
Szabґo, Pґeter,
[39]
Szarkowicz, Donald S., [598]
Szathmґary, EЁors,
[39]
Sze, Daniel Man-Yuen, [567]
Szeto, K. Y.,
[962]
Szota, Gy.,
[727]
Szpiro, George G.,
[1011]
Szpiro, George,
[966]
Szymanski, John,
[552]
Tagawa, K.,
[387]
Tahk, Min-Jea,
[289]
Tai, David,
[797]
Tai, Ray P.,
[362]
Takai, Yoshiaki,
[86, 89]
Takanashi, Susumu, [459]
Takiguchi, M.,
[510]
Talbi, El-Ghazali,
[672]
Tal-Botzer, Ronen,
[974]
Tambe, Sanjeev S.,
[1025]
Tamburrino, Antonello, [408]
Tamura, H.,
[158]
Tan, Jianrong,
[561]
Tan, Ying,
[925]
Tanaka, Hidetoshi,
[252]
Tanaka, Masataka,
[453]
Tanaka, Yoshiaki,
[456, 508]
Authors
Tang, Jiafu, Tanigawa, Toru, Taniguchi, T., Tapp, Henri, Tarantino, E., Tarroux, Philippe, Tasharofi, Samira, Tate, D. M., Tate, David M., Taxґen, L., Taylor, Caz, Teixeira-Dias, F., Tettamanzi, Andrea, Tew, J. D., Tezuka, Akira, Tham, M. T., Theiler, James, Thierens, Dirk, Thomson, Peter, Thuillier, S., Tian, Peng, Tian, Xue, Tiemin, Mei, Tiilikainen, Jouni, Tilli, J.-M., Ting, Andrew, Tintorґe, Joaquґin, Tintore, J., Todeschini, Roberto, Tolvi, J., Tomassini, Marco, 100, 107, 147] Tominaga, D., Tomita, Kohji, Toropov, V. V., Toroslu, H., Torres, Enrique Alba, Tґoth, Gґabor J., Tґoth, Gґeza, Tounsi, Mohamed, Tragha, Abderrahim, Treugut, Hendrik,
[619] [198] [159] [790] [475] [53] [47] [679] [591] [292] [73] [436] [260] [587] [458] [944] [552] [923] [75] [436] [768] [583] [468] [770, 771] [771] [31] [953] [960] [785] [786] [260, 85, 88, [620] [307] [488] [753] [152] [167] [29] [867] [575] [304]
Trigueros, J.,
[835]
Trompette, P.,
[747]
Troya, Josґe M.,
[895]
Trubian, M.,
[169]
Tsai, Frank T.-C.,
[427]
Tsuchiya, T.,
[232]
Tsuda, N.,
[471]
Tsutsui, H.,
[485]
Tunasar, C.,
[591]
Turgun, Altan,
[449]
Turner, P.,
[944]
Turney, Peter D.,
[213]
Turton, B. C. H.,
[245]
Tvrdґik, J.,
[1031]
Tyrrell, Andy,
[20]
Uchikawa, Yoshiki,
[456, 508]
Ucoluk, G.,
[753]
Ugur, A.,
[93]
Uhrig, R. E.,
[989]
Ulla, S.,
[536]
Umano, M.,
[158]
Umoru, Lasisi E.,
[560]
Unger, Thomas,
[541]
Urfer, W.,
[1009]
Ustun, B.,
[787]
Uutela, Kimmo,
[487]
Vaessens, R. J. M.,
[631]
Vandewalle, Joos,
[318]
Vankeerberghen, P., [676, 819]
Van Craenenbroeck, Elke, [811]
Van der Borght, Koen, [811]
van Vlijmen, Herman, [811]
Van Wesenbeeck, Liesbeth, [811]
Varadan, Vinay,
[1036, 965]
Varricchio, S.,
[941]
Vasicek, Daniel J.,
[678]
Vassilev, Vesselin K., [123]
Vasudevan, K.,
[952]
Vega, Jorge R.,
[447]
Vґehel, J. Lґevy,
[504, 505]
Venkatesan, D.,
[564]
Venter, Gerhard,
[254]
31
Verheyen, Ann,
[811]
Verlinden, Yvan,
[811]
Verma, Brijesh,
[283]
Vidal, Franck P.,
[446]
Vilasis-Cardona, X., [963]
Vilcu, Adrian,
[384]
Villard, Pierre-Frґedґeric, [446]
Villone, Fabio,
[408]
Vinterbo, S.,
[850]
Vleck, E. Van,
[266]
Voigt, Hans-Michael, [185]
Vose, Michael D.,
[594, 659, 660]
Voss, N.,
[880]
Voss, S.,
[372]
Vrahatis, M. N.,
[282]
Vukovic, S.,
[544]
Vuorenmaa, Petri,
[295]
Waagen, Don E.,
[987, 933]
Waagen, Don,
[949]
Wager, Tor D.,
[237]
Wagner, I. A.,
[385]
Wagner, M. G.,
[480]
Wah, Benjamin W., [584, 274]
Wainwright, Roger L., 678, 938]
[165, 934,
Wakutsu, T.,
[168]
Wala, K.,
[331]
Wales, David J.,
[287]
Walk, M.,
[767]
Wallet, B. C.,
[821]
Walters, G. A.,
[765]
Wang, Dingwei,
[601, 619]
Wang, H.,
[441]
Wang, Jaw-Lin,
[239]
Wang, Jingli,
[583]
Wang, Jun,
[925]
Wang, Liman,
[857]
Wang, Lusheng,
[356]
Wang, L.,
[555]
Wang, R. H.,
[950]
Wang, Shaomo,
[567]
Wang, Shimin,
[497]
Wang, Wanliang,
[566]
Wang, Yaming,
[798, 568]
32
Genetic algorithms in mathematics and statistics
Wang, Yuan-Kai,
[336, 342, 376]
Wang, Yu,
[1021]
Wangning, Long,
[710]
Wanrooij, E. van,
[985]
Warren, Mark A.,
[986]
Warsi, N.,
[773]
Wasiewicz, Piotr,
[283]
Wasil, Edward,
[206]
Wasserman, Gary S., [816, 827]
Watrous, John,
[92]
Webb, G. I.,
[426]
Weck, B.,
[676, 684]
Wegener, Ingo,
[706]
Wegman, E. J.,
[821]
Wei, Wei,
[561]
Weihs, Claus,
[848]
Weiss, O.,
[352]
Werfel, Justin,
[23]
Wertz, V.,
[602]
Westerdale, Thomas H., [148]
Weuster-Botz, Dirk, [243]
Whitehead, Bruce A., [1000]
Whitley, Darrell L.,
[884, 886, 887]
Whitley, Darrell, 883, 661, 662]
[429, 909,
Williams, B.,
[472]
Williams, R.,
[841]
Willis, Mark J.,
[818, 944]
Wilmut, M. J.,
[495]
Wilson, Reginald H., [790]
Wilson, W. G.,
[952]
Wise, B. M.,
[817]
Wojciechowski, J.,
[389]
Wong, T.,
[286]
Wong, Y. S.,
[751]
Woo, Hyun-Wook,
[289]
Woo, Kim Jun,
[579]
Wood, R. L.,
[467, 473]
Woodbury, Keith A., [460]
Woon, S. Y.,
[731]
Wright, Christine C., [246, 247]
Wu, Berlin,
[891, 892]
Wu, B.,
[1022]
Wu, Cheng-Tao,
[574]
Wu, Guang,
[566]
Wu, Lei,
[583]
Wu, Q. H.,
[548, 114]
Wu, Shinq-Jen,
[574]
Wuetschner, Georg,
[1037]
WuЁrtz, Diethelm,
[760]
Xanthakis, S.,
[393]
Xavian, M.,
[683]
Xia, Ling,
[434, 798]
Xiao, Wensheng,
[583]
Xie, Xiao-Qiang,
[803]
Xu, Hong-Wei,
[814]
Xu, Ling,
[567]
Xu, Qing-Song,
[810]
Xu, Yiqian,
[497]
Xuan, Yang,
[474]
Yadavalli, Vamsi K., [1025]
Yagiz, S.,
[929]
Yamada, M.,
[319]
Yamada, S.,
[1026]
Yamada, Yukio,
[458]
Yamamoto, T.,
[1008]
Yamamura, Masayuki, [216]
Yamamura, M.,
[217]
Yamnitsky, V. A.,
[98]
Yan, Jun,
[810]
Yan, Li,
[468]
Yang, C. Y.,
[478]
Yang, Erfu,
[493]
Yang, Ming,
[567]
Yang, Rui,
[810]
Yang, R.,
[755]
Yang, Saeyang,
[103]
Yang, Sang Yong,
[462]
Yang, T. C.,
[455]
Yang, Yingxu,
[25, 26]
Yang, Y.-S.,
[225]
Yang, Zihou,
[768]
Yao, and Hongxing, [582]
Yao, Hongxing,
[580]
Yao, Xin, 622, 290]
[284, 1013,
Yasunaga, Moritoshi, [956]
Ye, Bo,
[431]
Ye, Mao,
[497]
Yeboah, Mary Ann,
[580, 582]
Yeh, Chia-Hsuan,
[1010]
Yeh, Wei-Chang,
[981]
Yeh, William W.-G., [427]
Yeun, Y.-S.,
[225]
Yiguang, Hong,
[990]
Yinghua, Min,
[710]
Ylinen, Jari,
[15]
Yokomori, Takashi,
[856]
Yokoyama, Shigeyuki, [856]
Yonezawa, Yasuo,
[84]
Yoo, Joong-Suk,
[729, 756]
Yoo, Keunje,
[806]
Yoshida, K.,
[216, 217]
Yoshihara, Ikuo,
[956]
Yoshihara, I.,
[1026]
Yunes, Adolfo Gonzґalez, [954]
Yunker, James Milton, [587]
Yutaka, Miyahara,
[1044]
Zak, B.,
[531]
Zamparelli, Michele, [104]
Zandt, G.,
[418]
Zaoui, F.,
[610]
Zare-Shahabadi, Vali, [796]
Zbyszek, Drobisz,
[681]
Zeigler, B. P.,
[133]
Zelinka, Ivan,
[503]
Zeyher, Allen,
[267]
Zhai, W.,
[526]
Zhan, Weihua,
[903]
Zhang, Byoung-Tak, [1027]
Zhang, Fuji,
[553]
Zhang, Guangxin,
[431]
Zhang, Hang,
[494]
Zhang, Heng,
[568]
Zhang, Kianjung,
[306]
Zhang, Wen-Xiu,
[779]
Zhang, Y. G.,
[542]
Zhang, Zhenpeng,
[493]
Authors
Zhang, Zhongzhi, Zhao, J., Zhao, K. M., Zhao, Qiangfu, Zhao, Yunxin, Zheng, Bo, Zheng, Song, Zhenquan, Zhuang, Zhou, Gengui, Zhou, G.,
[903] [602] [419] [198, 717] [214] [791] [431] [967] [177] [367]
33
Zhou, Hayong (Harry), [130]
Zhou, Min,
[230]
Zhou, Shuigeng,
[903]
Zhou, Su-Min,
[789]
Zhou, Yan-Rui,
[803]
Zhou, Zekui,
[431]
Zhu, Lingyan,
[798, 568]
Zhu, Zhen,
[497]
Zhuang, N., 709, 716]
[701, 702,
Zhuang, Xinhua,
[214]
Ziegler, A.,
[663]
Zierhofer, Reinhard, [972]
Zoej, Mohammad Javad Valadan, [209]
Zomaya, Albert Y.,
[41]
Zomorodian, Afra,
[58, 77]
Zou, M.,
[278]
Zou, X.,
[278]
total 1034 articles by 2018 different authors
34
Genetic algorithms in mathematics and statistics
4.7 Subject index All subject keywords of the papers given by the editor of this bibliography are shown next.
'Abstract only,
[740]
2D GA,
[55]
3-matching,
[172]
3-SAT,
[885, 859]
AC drive
sensorless,
[577]
Acitation ([?]),
[444]
acoustics,
[423]
inverse problems, 455, 483]
[449, 451,
noise attenuation, [742]
adaptation,
[108]
ADC
delta-sigma,
[242]
delta-sigma modulator, [240]
aerodynamics,
[653, 475]
wing structure,
[726]
aesthetics,
[364]
agents,
[534, 537]
rules,
[203]
agriculture
chicken,
[813]
essential oils,
[810]
air pollution
forecasting,
[969, 970]
algebra,
[17]
codes,
[14]
analysiing GA
Markov chains,
[633]
analysing GA,
[660, 588,
244, 593, 247, 525, 273, 614, 896]
building blocks,
[429]
complexity,
[311]
convergence,
[523, 664]
covergence,
[539]
crossover,
[637, 339,
754, 16, 236, 238, 692]
deception,
[642]
fitness,
[34]
fitness landscape, 886, 887, 666]
[604, 629,
Markov chains,
[660]
Markov's logic,
[680]
MAXSAT,
[883]
mutation,
[594]
mutations,
[651, 652]
ordered greed,
[300]
population size,
[175]
ridges,
[429]
SAT,
[884]
selection,
[942]
statistics,
[926]
stochastic Mealy automata, [87]
analysing GP,
[778, 781]
analysing QC,
[860]
analysis
Walsh functions, [642]
analytical chemistry
markers,
[974]
animation,
[293]
ANOVA,
[924]
ant algorithm,
[365]
ant colonies,
[777]
ant systems,
[385, 388]
application
finance,
[640]
applications
finance,
[596]
statistics,
[915]
artificial brain,
[59]
artificial intelligence, [463, 110, 626]
decisions,
[205]
in ecology modeling, [558]
artificial life,
[151, 65, 66]
trees,
[542]
astronomy
asteroids,
[420]
imaging,
[199]
inverse problems, [502, 410]
sunspots, 1011]
[994, 995,
time series,
[957]
atomic clusters,
[287]
Lennard-Jones,
[623]
ATP,
[550]
ATPG,
[112]
automata,
[143, 133, 130,
134, 135, 127, 128, 148, 136, 146,
64, 83, 111, 117, 118, 126, 22, 40]
automata
1D,
[51]
Boolean,
[139]
cellular,
[101]
coding,
[120]
deterministic,
[77]
finite,
[80, 94]
finite deterministic, [70]
finite state, 112, 122, 30, 46]
[75, 76, 99,
finite state machine, [95]
finite state machines, [103, 45]
learning,
[79, 86, 89]
network,
[53]
pus-down,
[58]
pusdown,
[71]
quantum,
[92, 19, 27]
robotics,
[52]
self-reproducing, [132]
testing,
[47]
BDD,
[693]
beams
buckling,
[834]
beer
fermentation,
[790]
bibliography
70 items,
[764]
bin packing,
[165]
binary simulation,
[634]
biochemistry
glucose,
[826]
Subject index
35
pathogen bacteria, [791]
biology
evolution,
[574]
population dynamics, [49]
biophysics
brain activity,
[487]
blind source separation, [925]
boilers
combustion,
[741]
Boolean functions,
[872, 702, 721]
brain
hemodynamic response function, [904]
hemodynamics,
[237]
Breeder GA,
[475]
building blocks,
[175]
CAD,
[767, 184]
IC,
[721]
mechanical engineering, [733]
shape design,
[459, 239]
VLSI,
[391]
calculation
symbolic,
[682]
calibration
camera,
[740]
CAM,
[74]
cancer
drug design,
[800]
oral,
[208]
cardiology
ECG,
[434]
infarction,
[850]
CDMA/GPS,
[554]
celestial mechanics,
[420]
cell regulation
proteins,
[53]
cellular automata,
[145, 138, 142,
144, 129, 131, 137, 140, 141, 147,
149, 54, 55, 56, 61, 62, 63, 65, 66,
67, 68, 69, 72, 73, 74, 78, 81, 84,
91, 93, 96, 97, 98, 102, 105, 109,
110, 113, 115, 119, 121, 123, 124,
20, 21, 23, 24, 25, 26, 28, 31, 33,
34, 35, 37, 39, 42, 48, 49, 50, 18]
cellular automata
1D,
[82]
design,
[101]
FPGA,
[125]
image processing, [57]
logic gates,
[43]
neural networks, [59, 104]
non-uniform, 107, 108]
[88, 90, 106,
quantum,
[29, 32]
rules,
[116]
cellular GA,
[48]
celluler automata,
[100]
chaos,
[140, 275, 968]
time series,
[953, 955]
chemical kinetics,
[565]
chemistry,
[764]
analytic,
[791]
analytical,
[843, 796]
bio-,
[510, 550]
chemometrics,
[825]
drug design,
[616]
physical,
[262, 565]
spectroscopy,
[814]
structural, 390, 777, 569]
[293, 370,
chemometrics,
[817, 775]
NIRS,
[808]
QSAR,
[932]
wavelength selection, [820]
chemometry
variable selection, [788]
chromosome
diploid,
[279]
chromosomes
non-linear,
[912]
ciphers,
[190]
substitution,
[187]
cladistics,
[255]
classification,
[933, 785]
decision trees,
[206]
feature,
[199]
fuzzy,
[207]
time-series patterns, [1042]
classifier systems,
[658]
classifiers,
[595, 231]
clique cover,
[391]
cluster analysis,
[627]
evolutionary,
[559]
clustering,
[298, 959, 569]
regression,
[776]
clusters
atomic,
[623]
co-evolution,
[123]
fitness,
[780]
coding
2D,
[513]
column tables,
[371]
finite state machine, [120]
graphs,
[371]
Gray,
[429]
matrix,
[513, 511]
real, 104, 754, 544]
[513, 598,
SAT,
[880]
spanning trees,
[386]
coding theory,
[631]
coevolution, 23, 415, 41, 18]
[115, 1019,
machine learning, [110]
cognition
testing,
[237]
combustion
oxidation,
[563]
comments on [195],
[188]
comparison,
[830]
conventional graph plotting, [348, 354]
conventional method, [457]
cost-sensitive classification, [213]
decision tree classifiers, [227, 228]
experimental design, [251, 252]
GA worse,
[608]
GAMS in control, [646]
heuristics,
[641]
immune systems, [554]
in artificial intelligence, [463]
in classification, [595]
36
Genetic algorithms in mathematics and statistics
in delta-sigma modulator design, [242]
in inverse thermal field, [467]
in mechanical design, [735]
in neural network training, [274]
in OBDD,
[689, 690, 694]
in regression,
[831]
in SAT,
[871]
in TSP,
[520]
Kernighan-Lin,
[317]
linearization,
[458]
Metropolis,
[876, 339]
MSX,
[759]
Nelder-Mead,
[759]
neural networks, [817]
Newton's method, [828]
nonlinear regression, [817]
OBDD,
[693]
random search,
[759]
regression,
[828]
SAT,
[870]
scatter search,
[865]
serial GA,
[628]
simple stochastic algorithm, [608]
simulated annealing, [184, 644, 311, 317, 876, 339, 916, 255, 310]
statistical models, [1020]
statistical package, [852]
stochastic automata, [60]
tabu search,
[255]
traditional heuristics, [295]
traditional methods, [75, 465]
comparison?,
[166]
composites,
[726]
compression
text,
[753]
computation
peptide,
[863]
computational geometry, [621, 308]
tiling,
[748]
computer graphics,
[324, 364]
fractals,
[474]
graphs,
[340, 378]
ray trace,
[677]
scene graphs,
[308]
trees,
[542]
computer network
design,
[918]
computer science
string,
[111]
trees,
[337]
computing
data-flow graphs, [358]
concept formation,
[226]
context free languages, [146]
control, 599, 472, 670, 959]
[919, 984,
comparison to classical, [557]
discrete time,
[646]
distributed,
[780]
environmental,
[513]
fermentation,
[630]
knitting,
[124]
MINO,
[557]
optimal,
[669]
parameter estimation, [851]
robot,
[780]
state machine,
[52]
structures,
[746]
control systems,
[592]
controller
AC drive,
[577]
controllers,
[838]
fuzzy, 555, 557]
[618, 624,
cooling tower,
[725]
cooperation,
[102, 286]
crack location
eddy current,
[439]
crossover,
[655, 637, 659]
2D,
[513]
analysis,
[754]
color,
[374]
cycle,
[374]
experimental design, [236, 238]
factorial design,
[236]
knowledge-based, [326, 362]
multi parent,
[238]
order problems,
[692]
PMX,
[374]
cryptology, 188, 189, 190, 191]
[193, 194,
knapsack,
[192]
knapsack ciphers, [195]
M-209,
[196]
Spanish strip cipher, [186]
substitution ciphers, [187]
CT
cancer,
[743]
lung,
[446]
curve fitting,
[774, 852, 679]
multidimensional, [772]
DARWIN,
[960]
data analysis,
[636]
data clustering,
[627]
data flow graphs,
[392, 402]
data mining,
[779]
time-series,
[1042]
databases
analysis,
[535]
deception,
[661, 585]
decirion trees,
[233]
decision
binary,
[722]
decision making,
[615]
influence diagrams, [896]
decision support,
[1038]
decision theory,
[584]
decision tree
fuzzy,
[203]
image processing, [209]
decision trees,
[212, 213, 214,
703, 216, 218, 222, 711, 717, 225,
199, 202, 204, 208, 197, 198, 200]
decision trees
binary,
[224]
fuzzy,
[215, 205, 207]
ID3,
[229]
induction,
[226, 708]
Pareto optimal,
[217]
Subject index
37
decisions
fuzzy,
[205]
design
engineering,
[769, 733]
shape,
[749]
diabetes
fuzzy reasoning, [801]
diagnosis,
[545]
fault,
[493]
diesel engines
fuel,
[805]
differential equations, [638, 609]
differential evolution, [695]
mutation,
[739]
quantum,
[695]
regression,
[795]
digital electronics,
[112]
ADC,
[240, 242]
Reed-Muller,
[701, 702]
state machines,
[75]
diversity,
[258, 755, 206]
DNA
sequence alignment, [608]
sequence analysis, [612]
DNA computing,
[600, 375, 868]
SAT,
[856, 857, 858]
drug design,
[262]
QSAR,
[797, 802]
ecology
distribution,
[636, 1047]
modeling,
[558]
economics,
[250]
credit evaluation, [613]
currency trading, [1035]
finance,
[1038]
financial time series, [971]
Holt-Winters model, [1014]
pricing,
[835]
quality,
[733]
risk analysis,
[940]
stock markets,
[964]
stock prices,
[986]
time series, 966]
[983, 1010,
trade,
[606]
economics 7forecasting, [847]
economics modeling, [229]
economy
econometrics,
[928]
electrical impedance tomography
two-phase flow,
[435]
electromagnetics, 610, 490, 554]
[466, 469,
crack location,
[439]
eddy current,
[431]
eddy currents,
[406, 408]
imaging,
[411]
inverse problem, [415, 425]
inverse problems, [507, 508]
microwaves,
[432]
scattering,
[428]
electronics,
[714]
circuit design,
[91]
digital, 297, 30]
[720, 22, 24,
elitism,
[104]
emergent phenomenon, [67]
engineerin
power,
[805]
engineering
aerospace, 726, 739]
[517, 493,
chemical,
[382, 285, 810]
civil,
[432, 50]
computer,
[701, 343]
control,
[927]
design,
[173]
electrical,
[663, 554]
energy,
[563]
hydrodynamics,
[653]
material,
[453]
materials,
[439, 560]
mechanical,
[470, 114,
419, 733, 735, 426, 431, 239, 435,
436, 438, 583]
medical,
[432]
metallurgy,
[551]
power, 233, 958, 741]
[989, 1040,
process,
[630, 725]
quality,
[713]
radio,
[462, 411, 433]
reliability,
[156]
software,
[204]
structural,
[761, 762, 763,
746, 747, 834, 254, 723, 234, 726,
417, 730, 731, 732, 33, 734, 737, 42,
431, 438]
engineering design,
[757, 417]
engineering structural, [736]
environment
air quality,
[809]
mosqitos,
[980]
pollution,
[806]
toxins,
[812]
estimation
density,
[933]
evolution
differential,
[752]
origin of life,
[37, 39]
time-scale,
[34]
trees,
[255]
evolution strategies,
[404, 653,
767, 663, 760, 352, 279, 752]
tutorial,
[913]
evolutionary programming, [592, 914]
evolutionary strategy, [565]
evolvable hardware, [24]
self-replicating,
[20]
experimental design,
[258, 244,
246, 247, 248, 249, 250, 612, 255,
256, 257, 237]
experimental design
response surface, [254]
Taguchi,
[245, 234, 239]
facility layout problem, [309]
factorial analysis,
[244]
factorial design,
[249]
fault detection
motor,
[958]
feature extraction,
[656]
feature selection,
[842]
QSAR,
[797]
38
Genetic algorithms in mathematics and statistics
FEM,
[477, 234, 239]
fermentation,
[630]
fiber grating,
[491]
filters,
[91]
digital,
[826]
IIR,
[240]
morphological,
[552]
finite automata,
[80]
finite state transducers, [45]
fitness
bitwise expected value, [888]
covariance,
[429]
landscape,
[175]
noisy,
[526]
fitness function
progressive,
[46]
fitness landscape,
[604]
local search,
[290]
NK,
[887]
theory,
[666]
fluid dynamics,
[739]
fluorescence imaging
ICG,
[795]
food
apple,
[803]
beer,
[790]
chicken fillets,
[813]
forecasting
time series,
[992, 963]
forest machines,
[737]
formal languages
context-free,
[77]
FPGA
cellular automata, [570]
control,
[52]
encryption,
[575]
SoC,
[577]
Xilinx,
[709]
fractals,
[504, 505]
2D inverse,
[463]
IFS, 498, 407, 443]
[474, 542,
inverse,
[405, 503]
function approximation, [675]
fuzzy sets,
[212]
fuzzy systems,
[877, 681,
218, 1004, 533, 485, 543, 807]
decision tree,
[219]
neural networks, [929]
regression,
[845]
rule-based,
[232]
time series,
[1022]
time-series,
[1012]
GA hardness
graph problems, [381]
game theory
Markov decision process, [547]
games,
[137, 70, 102]
JSS,
[579]
GARP,
[558]
GIS,
[636, 1047]
generations
1000,
[513, 267, 104]
genetic programming,
[226,
986, 58, 211, 911, 675, 818, 597,
77, 78, 80, 347, 994, 996, 357, 91,
15, 829, 1040, 1010, 1011, 944, 839,
488, 115, 1018, 498, 225, 1028, 297,
1036, 965, 693, 929, 956, 198, 1037]
genetic programming
acyclic graphs,
[322]
constraints,
[607]
decision trees,
[221]
finite state machines, [45]
fuzzy regression, [792]
global optimization, [283]
graphs,
[359]
implementation, [371]
interval arithmetics, [784]
regression,
[780, 783]
symbolic regression, [972]
time series,
[988]
tree-adjoining grammars, [778, 781]
genetics,
[654, 208]
genotype,
[131]
geophysics,
[513, 476]
electrical sounding, [437]
ground water,
[413, 427]
inverse problems, 416, 418, 421]
[496, 501,
oceanology,
[953]
seismology,
[492, 500, 422]
GFA,
[932]
GIS
NDVI,
[1047]
global optimization, [261, 249]
algorithm,
[521]
goal programming,
[527]
GPS
test function,
[554]
graph coloring,
[391, 874, 300]
graph matching,
[376]
graph partitioning,
[657, 79]
graph theory
minimum spanning tree, [177]
graphics,
[313, 518]
graphs,
[404, 401,
393, 398, 391, 313, 318, 319, 518,
325, 352, 374, 382, 388, 298, 898,
901, 903, 307]
graphs
bi-partitioning problem, [314]
bipartitioning,
[330]
clique detection, [357]
cliques,
[381]
coloring, 366, 300]
[355, 365,
colouring,
[377]
complete,
[553]
DAG, 332, 347]
[399, 400,
data dependancy, [343]
data-flow,
[358]
design,
[389]
directed,
[315]
drawing,
[340, 350, 369]
generation,
[297]
graph coloring,
[387]
Hamiltonian,
[334, 375, 385]
hyper-,
[320]
implementation, [371]
independent set, [362, 373]
Subject index
39
isomorphism,
[342, 376, 390]
Keller,
[381]
layout,
[324]
map coloring,
[395]
matching, 294, 301]
[336, 344,
max-clique,
[396, 311, 339]
maximum clique, 363, 368]
[874, 359,
maximum clique problem, [327, 335]
median,
[299, 302]
minimum spanning tree, [333]
p-median,
[306, 309]
partitioning,
[397, 403,
316, 317, 320, 323, 326, 329, 331,
341, 360, 305]
partitioning trees, [337]
plot,
[348, 354, 361]
rendering,
[378]
rrawing,
[364]
set covering,
[345, 380]
spanning tree,
[383]
spanning trees, 386, 303]
[353, 367,
Steiner tree,
[379]
Steiner trees, 321, 328, 338, 372]
[394, 312,
thickness,
[295]
topological invariants, [310]
traversal,
[356]
TSP,
[384]
weighted,
[553]
graphs?,
[349]
GRASP,
[166]
grating
fiber,
[489]
ground water,
[427]
pollution,
[806]
hardware
evolvable,
[718]
FPGA,
[552]
heat conduction,
[465]
hill-climbing,
[164]
HOG,
[240, 241, 242]
Hopfield neural networks, [531]
Hopfield's model,
[159]
host-pathogen model, [34]
hybrid,
[316, 387]
ant colony,
[796]
branch and bound, [157]
branch-and-bounf, [918]
CRS,
[759]
decision trees,
[210]
experimental design, 241, 242]
[253, 240,
fuzzy systems,
[424, 793]
gradient search,
[619]
gradient-based algorithm, [462]
hill-climbing,
[871, 294]
ICA,
[771]
Lagrange relaxation, [158]
local search, 755, 861]
[262, 255,
maximum likelihood, [484]
neighbourhood search, [330]
neural networks,
[190, 823,
531, 957, 234, 964, 971, 438, 571]
Newton,
[273, 427]
Powell method,
[620]
quantum computing, [967]
simplex,
[755]
simplex method, [495]
simulated annealing, [396, 768, 468]
statistics,
[936]
tabu search,
[586, 785]
hyperplanes,
[662]
ID3,
[229]
image processing,
[507, 933]
3D matching,
[515]
astronomy,
[199]
cellular automata, [57]
chain coding,
[45]
feature extraction, [656]
filtering,
[104]
fractals, 498, 443]
[454, 474,
fractographs,
[296]
infrared,
[458]
Kirlian photographs, [304]
machine vision,
[48]
medical,
[506]
neural networks, [552]
pattern matching, [294, 301]
reconstruction,
[916]
registration,
[578]
textures,
[828]
tomography,
[435]
image registration,
[743]
point matching,
[578]
imaging
3D,
[301]
hyperspectral,
[209]
stereo,
[296, 301, 740]
immune system,
[84]
immune systems, 41, 782]
[756, 20, 36,
fuzzy,
[729]
implementation
ACM Algorithm 744, [521]
C,
[513, 187]
C++, 354, 361, 283]
[315, 348,
cellular automata, [114]
Common LISP,
[890]
Convex 200,
[513]
Excel,
[639]
Fortran-77,
[960]
FPGA,
[125]
IBM SP1,
[161]
Mathematica,
[645]
MATLAB,
[984]
MIMD,
[262]
multiprocessor,
[728]
Paragon XP/S 10, [104]
PVM,
[687]
R,
[908]
systolic architecture, [329]
transputers,
[672, 722]
vehicle routing,
[298]
VHDL-AMS,
[555]
indocyanine green
tissue perfusion, [795]
40
Genetic algorithms in mathematics and statistics
induction
context-free languages, [58]
interval arithmetics, [249]
inverse problem
seismology,
[492]
inverse problems,
[506, 453,
460, 461, 468, 472, 476, 479, 481,
485, 486, 488, 489, 434]
inverse problems
2D fractals,
[463]
acoustics,
[464, 483, 423]
aerodynamic,
[459, 475]
altimeter,
[416]
automata,
[94, 99]
boundary,
[477]
chromatography, [444]
CT,
[446]
current distribution, [457]
damage,
[438]
defect shape,
[439]
diagnosis,
[493]
ECG,
[568]
eddy current,
[406, 408, 431]
EEG,
[412]
electrocardiography, [448]
electromagnetic, [456, 415, 433]
electromagnetics, [466, 469, 432]
fiber grating,
[491]
fractal,
[503, 407]
fractals, 505, 454, 474, 498]
[405, 504,
ground water,
[427]
heat conduction, [465, 470]
heat transfer,
[440]
hydrogeology,
[413]
IFS,
[443]
inverse scattering, [462]
kinematics,
[480, 424]
magnetic,
[490]
medical,
[487]
MEG,
[487]
modeling,
[436]
neuromagnetism, [452]
optical,
[494]
radar,
[411]
radiation,
[478]
radiotherapy,
[409]
remote sensing,
[420]
ridges,
[429]
scattering, 428, 445, 447]
[482, 497,
seismology,
[450, 484,
495, 499, 500, 422, 437]
stress,
[419]
thermal,
[467, 471, 473]
tomography,
[458, 435, 441]
inverse problems 7tomography, [442]
Ising spin glass,
[947]
iterated prisoner's dilemma, [83]
JSS
game approach,
[579]
laminates,
[431]
land use,
[50]
languages
context-free,
[19]
non-regular,
[92]
layout design,
[184, 536, 173]
drilling,
[583]
networks,
[765]
learning classifier systems, [208]
LHC,
[490]
LibGA,
[165]
linear algebra,
[16]
linguistics
decision trees,
[211]
machine learning,
[146, 160,
324, 595, 603, 525, 93, 1013, 618,
624, 971, 974, 580]
machine learning
clustering,
[559]
decision trees,
[220, 201]
inference,
[46]
landscapes,
[849]
machine sequencing, [628]
macromolecules,
[510, 777]
replication,
[37, 39]
magic squares,
[155]
magnetoencephalography, [506]
magnets
superconducting, [490]
majority classification, [78]
manufacturing
assortment problem, [641]
casting,
[549]
cold mill,
[224]
machining,
[745]
modeling,
[792]
sheet metal,
[419, 426]
textile,
[251, 124]
TSP,
[520]
map coloring
four colors,
[395]
mapping problem,
[672]
materials
aluminium,
[436]
modeling,
[33, 42]
plasticity,
[436, 436]
mathematics,
[638]
algebra,
[15]
curve fitting,
[676]
fitting,
[675]
graph theory,
[673]
integration,
[677]
logic,
[680]
matrices,
[686]
nonlinear equations, [684]
Propositional Logic, [685]
regression, 679, 681]
[676, 678,
regressions,
[773]
tensors,
[682, 683]
theorem proving, [685, 674]
matrix
sparce,
[512]
MAX-SAT,
[876]
MAX-W-SAT,
[862, 865]
maximal clique,
[391]
maximum clique problem, [327]
MAXSAT,
[883, 886, 887]
mazes,
[60]
Subject index
41
mechanics
brachistochrone, [598]
medical imaging
cancer,
[494]
CT,
[446]
fluorescence,
[795]
fMRI,
[237]
lung,
[743]
MRI,
[897, 904]
radiographs,
[351]
tomography,
[546, 432, 441]
ultrasound,
[573]
medicine
cancer,
[831, 800]
cardiology, 434, 566, 568, 448]
[346, 850,
Chinese,
[230]
clinical trials,
[647]
decision tree,
[223]
dermatology,
[445]
diabetes,
[801]
diagnosis,
[213, 1013]
drug design, 802, 804, 807]
[616, 797,
genetics,
[899, 906]
glaucoma,
[1032]
MEG,
[506]
neurology, 1048]
[412, 237,
oncology,
[208, 789]
orthopaedy,
[239]
orthopedics,
[576]
physiology,
[798]
psychology,
[571]
radiotherapy,
[409]
statistics,
[904]
surgery,
[559]
TCM,
[567]
thermotherapy,
[471]
virology,
[811]
metabolic pathways, [550]
metallurgy,
[436]
ferrous,
[551]
meteorology,
[513]
microscopy
SEM,
[296]
microwaves
energy,
[433]
minimax problem,
[615]
mobile robots,
[60]
MobyDigs,
[785]
modeling
materials,
[436]
molecular computing, [44]
molecular graphs,
[370]
motor
electrical,
[958]
MRI
experimental design, [897]
multi-objective optimisation, [974]
multispectral imaging, [552]
mutation,
[553]
analysis,
[594]
controlled,
[732]
optimal probability, [519]
trigonometric,
[739]
mutation calculi,
[651, 652]
NADH,
[550]
nanotechnology,
[44]
thin films,
[770, 771]
nesting,
[748]
network bisection,
[184]
networks
layout design,
[765]
Neumann
von,
[132]
neural Darwinism,
[626]
neural networks,
[127, 632,
650, 229, 139, 59, 65, 66, 773, 1033,
1020, 848, 500, 225, 1027, 24, 963]
neural networks
architecture,
[975]
backpropagation, [1026]
Bayesian,
[917]
brain,
[626]
CA,
[96]
cellular,
[104]
cellular automata, [150, 74]
cellular automata, [151]
chaotic,
[1017]
control,
[1041]
design,
[622]
Elman,
[958]
fault detection,
[958]
feedforward,
[834]
forecasting, 969, 970]
[1006, 1038,
Hopfield,
[466, 191, 531]
image processing, [656]
inverse problems, [426]
learning,
[824]
machine learning, [1013]
massive,
[151]
optimization,
[995]
perceptron,
[552]
perceptrons,
[987, 1019]
prediction,
[1007]
radial basis function, [1000, 961, 582]
recurrent,
[1008]
regression,
[770, 809]
sequential,
[985]
signal processing, [925]
structure,
[984, 540]
support vector machine, [791]
system identification, [522]
time series,
[982, 993,
1018, 1028, 968, 975]
time series prediction, [954, 973]
training,
[351, 274,
104, 837, 958, 739, 931]
weight optimization, [1035]
weights,
[262]
neurology,
[452]
brain activity,
[487]
brain oscillation, [1048]
epilepsy,
[412]
news,
[102]
niche
search,
[271]
NIRS
42
Genetic algorithms in mathematics and statistics
diesel oil,
[805]
food quality,
[803]
imaging,
[813]
node partitioning,
[391]
non destructive testing
eddy current,
[406]
nonlinear function,
[643]
NSGA-II,
[561]
OBDD,
[705, 708]
design,
[703, 717]
evolvable hardware, [718]
for testing,
[700]
optimisation,
[711, 714, 691]
Reed-Muller,
[702]
testing,
[712]
variable ordering,
[701, 704,
706, 707, 709, 710, 713, 715, 716,
719, 687, 688, 689, 690, 692, 693,
694, 695, 696, 697, 698, 699]
object recognition,
[48]
operations research
facility layout,
[309]
p-median,
[306]
operators
SAT,
[880]
operators statistics,
[937]
optical design
Zemax,
[267]
optics,
[767]
fibers,
[491]
gratings,
[489]
inverse problems, [430]
photometry,
[420]
photonic chrystals, [902]
scattering,
[497, 447]
skin,
[445]
optimisation
constrained,
[724, 744]
continuous,
[538]
multi-objective,
[561, 745]
Pareto,
[741, 561]
pareto,
[551]
optimization, 853, 147]
[635, 922,
combinatorial,
[185, 182,
178, 181, 184, 179, 180, 183, 155,
156, 157, 158, 159, 589, 160, 161,
162, 163, 164, 165, 166, 167, 339,
168, 169, 170, 171, 172, 373, 173,
174, 175, 176, 177, 152, 153, 154]
constrained, 280, 758]
[750, 605,
GA,
[245]
global,
[292, 291,
759, 293, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 286,
755, 285, 287, 288, 289, 290]
microcode,
[343]
mixed variable,
[548]
multi-objective,
[729]
multiobjective,
[757]
nonlinear,
[586]
nonLinear Programming, [619]
Pareto, 217, 545, 549]
[763, 216,
quantum,
[860]
review,
[668]
sinc,
[131]
orthopaedy
implants,
[239]
p-median problem,
[309]
parallel GA,
[401, 181,
672, 918, 920, 147, 260, 262, 161,
332, 722, 475, 281, 881, 104, 107,
174, 628, 687, 688, 728, 861]
parallel GA
hybrid,
[166]
island,
[374]
MOGA,
[742]
scalability,
[895]
superlinear,
[266]
tomography,
[442]
parallel GP,
[839, 202]
parallelism,
[661]
parameter estimation, 444]
[984, 1009,
Pareto,
[239, 742]
particle swarm,
[738, 696]
patent, 1044, 1034]
[1039, 1043,
pattern matching,
[304]
pattern recognition,
[344, 214,
1008, 374, 376, 779]
cellular automata, [38]
defects,
[224]
galaxies,
[199]
graphs,
[385]
phoneme,
[572]
time-series,
[1038]
PCA,
[798]
PCR-microchip,
[791]
peptide computer,
[863]
peptides
matrixmodels,
[510]
perceptrons,
[648]
Petri nets
modelling,
[617]
phenotype,
[131]
physics,
[907]
elasticity,
[453]
general,
[538]
magnetics,
[457]
optics,
[265, 267]
radiactice decay, [924]
seismology,
[414]
self-assembly,
[900]
statistical,
[256, 894]
statistics,
[947]
thermo,
[460, 478]
x-ray,
[770, 771]
physiology
cardiac transmembrane potentials, [798]
heart,
[566]
planning
transmission,
[233]
PLS,
[790]
politics,
[658]
polynomials
tensor,
[683]
popular,
[102]
global optimisation, [259]
population size,
[258]
10,
[104]
100,
[890, 609, 793]
40,
[513]
Subject index
43
70,
[646]
power
nuclear,
[989]
prediction
stock markets,
[964]
prisoner's dilemma,
[102]
product platform,
[561]
production economics
production planning, [601]
quality,
[733, 204]
production planning
Kanban,
[751]
progressive GA,
[625]
propulsion
diagnosis,
[493]
protein folding,
[764, 252]
experimental design, [243]
optimization,
[287]
review,
[668]
PSO,
[981]
spectroscopy,
[808]
psychology
physiological,
[237]
QSAR,
[932, 777, 807]
quality
experimental design, [235]
software,
[204]
quality control,
[415]
eddy current,
[406]
quantum computers
Clifford algebra, [13]
quantum computing, [894]
automata,
[92, 19, 665]
hardware,
[29]
optimization,
[860]
review,
[32]
stabilization,
[667]
theory,
[516]
quantum dots
automata,
[44]
quantum GA,
[695]
radar,
[411]
radioactive decay,
[924]
random number generators, [88]
random walks,
[553]
reasoning
inductive,
[711]
regression,
[852, 932, 817,
819, 820, 825, 826, 827, 943, 831,
833, 842, 843, 775, 892, 785, 801]
regression
ambiguous,
[783]
fuzzy,
[681, 840, 793]
linear,
[921, 821, 811]
logistics,
[789]
model fitting,
[978, 905]
NIRS,
[805]
non-linear,
[260]
nonlinear,
[823]
outlier detection, [786, 794]
PLS, 788, 800]
[820, 822,
QSAR,
[777]
spectroscopy,
[841]
support vector,
[787]
SVM,
[804, 812]
symbolic,
[818, 829,
839, 225, 778, 781, 782, 783, 784]
wavelet,
[846]
regression?,
[878]
remote sensing
AVHRR,
[1047]
hyperspectral data, [815]
oceanology,
[464]
satellite images,
[578]
subpixel detector, [209]
review,
[530]
analysis of GA,
[541]
Computer-aided molecular design, [616]
ecological modeling, [558]
global optimization in chemistry, [287]
material engineering, [560]
metallurgy,
[551]
operations reasearch, [183]
optimization,
[264]
protein folding,
[668]
stochastic optimization, [893]
review of
[39],
[37]
review of [857],
[858]
review of [868],
[866]
rles
automata,
[51]
RNA
replication,
[37, 39]
robotics,
[60, 829]
control,
[52]
inverse kinematics, [480]
machine vision,
[740]
manipulators,
[424]
routing
vehicle,
[298]
rule based systems,
[962]
cellular automata, [116]
fuzzy,
[602]
rule systems,
[636]
rule-based systems,
[25, 26]
rules,
[640]
sampling,
[584]
Markov chain,
[946]
Markov chain Monte Carlo, [945]
SAT,
[889, 890, 853,
854, 869, 871, 873, 874, 875, 880,
860, 861, 862, 863, 865, 867, 855]
SAT
3-SAT,
[882]
3SAT,
[888, 872]
DNA computing, 858, 866, 868]
[856, 857,
hard cases,
[879]
large Boolean expressions, [888]
probalistic logic, [864]
Walsh analysis,
[884]
SAT?,
[881]
scattering
inverse,
[482, 445]
scheduling,
[392, 707]
cellular automata, [36, 41]
execution,
[358]
44
Genetic algorithms in mathematics and statistics
JSS,
[173]
multiprocessor,
[113]
multiprocessors, [165]
open shop,
[514]
projects,
[611]
single machine,
[562]
screening
in silico,
[802]
sea
temperature,
[953]
seismology,
[450, 495, 499]
inverse problem, [492]
inverse problems, [484, 414]
selection
sexual,
[437]
self-organizing map, [1041]
sensoring,
[470, 382]
fluid velocity,
[739]
sequencing,
[707]
set covering problem, [564]
set partitioning,
[161]
SGA,
[755]
shape design, 731, 738]
[475, 727,
wind turbine,
[308]
sheet metal
forming,
[426]
strain testing,
[419]
signal processing, 1008, 959]
[760, 532,
brain,
[1048]
electrocardiographs, [346]
filters,
[963]
IIR,
[240]
source separation, [925]
speech,
[925]
time-series,
[1042]
ultrasound,
[573]
voice,
[572]
wavelets, 1028]
[846, 1018,
signal processing/BSS, [925]
simulated annealing, 1021]
[644, 166,
simulation,
[142, 587, 102]
animal communication, [511]
skin
melanin,
[445]
sociology,
[649]
soft computing,
[417]
software
microcode,
[343]
testing,
[393, 830]
software maintenance
effort prediction, [210]
software testing,
[393]
SOM,
[1041]
sonic crystals
design,
[742]
spanning tree
minimum,
[177]
spectral vawelength selection.parallel GA, [799]
spectroscopy,
[804]
calibration,
[841]
infrared,
[820, 826]
IR,
[846]
mass,
[822]
near-infrared,
[846, 788]
NIR, 787, 790, 803, 814]
[820, 833,
sports
skiing,
[747]
spreadsheets,
[639]
statistical models,
[1020]
statistics,
[671, 948,
950, 951, 952, 932, 933, 915, 923]
ANOVA,
[924]
Bayesian,
[942]
cluster analysis,
[627]
econometrics,
[928]
estimation,
[949]
experimental design, [235]
higher order,
[925]
maximum likelihood, [941]
median,
[938]
medicine,
[931]
modeling,
[943]
noise,
[927]
outlier,
[934]
outlier detection, [819]
principal component analysis, [944]
quality control,
[935]
regression analysis, [816]
responce surface, [248]
response-surface, [939]
risk analysis,
[940]
sampling,
[945, 946, 929]
textbook,
[930]
time series,
[823, 891]
Steiner trees,
[312, 338]
StGA,
[86, 89]
strings,
[319]
subpopulations,
[161, 871]
SVM,
[810]
regression,
[798, 568]
system identification, [998, 1045]
systolic arrays,
[320]
tabu search,
[331, 166]
TBDD,
[710]
telecommunications, [14]
ATM,
[997]
testing
material,
[296]
materials,
[431, 439]
nondestructive,
[431]
real world problems, [161]
regression,
[832]
software,
[832, 47, 556]
VLSI,
[844, 700]
XML,
[556]
textiles
cotton,
[788]
knitting,
[124]
theory
algebra,
[593]
deception,
[585]
Vose-Liepins conjecture, [588]
thermodynamics,
[465, 470, 473]
Subject index
45
heat transfer,
[440]
time searies,
[1031]
time series,
[1029, 983,
984, 985, 987, 989, 990, 997, 1001,
1002, 1005, 1008, 1010, 1020, 1021,
959, 962, 965, 967, 956]
time series
air pollution,
[969, 970]
analysis,
[1022]
ARMA model,
[1009]
bilinear,
[1015]
chaos,
[1025, 960]
chaotic,
[996, 1011]
economic,
[1007, 972]
economic cycles, [1014]
forecast,
[953, 955]
forecasting,
[993, 1003,
1006, 1011, 961, 971, 975]
fuzzy,
[991]
genetic programming, [988]
Mackey-Glass,
[1013]
medical,
[974]
model fitting,
[978, 905]
mosqitos,
[980]
non-linear,
[968]
parameter estimation, [992]
prediction,
[1030, 1000,
1004, 1012, 1016, 1017, 1018, 1019,
1023, 1024, 1026, 1027, 1028, 958,
960, 973, 981]
regression,
[976, 977]
stock markets,
[964]
sun spots,
[954]
sunspots,
[994, 995]
Volterra,
[998]
time series prediction, [986, 999]
time series?,
[979]
time-series, 1034, 1046, 1036]
[1041, 1044,
patterns,
[1042]
power,
[1040]
prediction, 1037]
[1039, 1043,
Volterra,
[1045]
TimGA,
[348, 354, 361]
tissue perfusion
ICG,
[795]
tomography
EIT,
[435, 442]
infrared,
[458]
NIR,
[441]
optical,
[441]
reconstruction,
[546]
Tikhonov regularization, [434]
traffic
analysis,
[529]
transportation,
[384]
hazardous materials, [581]
tress,
[571]
TSP,
[184, 766, 888, 768, 589, 316, 245, 326, 165, 520, 356, 384, 860]
TSP
Euclidean,
[591]
tutorial
GA in statistics, [915]
inverse problems, [417]
scatter search,
[910]
theory,
[909]
variable selection,
[822]
linear regression, [786]
regression,
[789]
vehicle routing,
[298]
vehicles
automobile,
[878]
virtual genetic algorithm, [937]
virus,
[524]
VLSI
area,
[697]
CMOS,
[716]
design,
[316, 702,
721, 704, 706, 707, 112, 709, 714,
715, 716, 719, 22, 687, 688, 30, 689,
690, 46, 691, 692, 693, 694, 695,
696, 697, 698, 699]
power,
[697]
testing, 712, 700]
[105, 844,
VLSI design, 24]
[323, 705, 20,
gate matrix layout, [509]
water
alcohol,
[787]
wavelength selection, [833, 788, 814]
NIRS,
[790]
zoology
animal communication, [511]
46
Genetic algorithms in mathematics and statistics
4.8 Annual index The following table gives references to the contributions by the year of publishing.
1957,
[919]
1966,
[143]
1970,
[635, 654, 655]
1973,
[671]
1974,
[133]
1978,
[651]
1980,
[652]
1981,
[404]
1983,
[653]
1986,
[130, 134, 135]
1987,
[127, 185]
1988,
[128, 145, 227, 767]
1989,
[632, 889, 643, 182, 658]
1990, 663]
[178, 948, 648, 397, 650, 401, 228, 890,
1991,
[132, 292, 226, 138, 142, 774, 922, 181,
144, 950, 951, 184, 766, 672, 952, 148, 686]
1992,
[853, 854, 405, 918, 392, 636, 637, 393, 640, 641, 642, 921, 761, 762, 763, 291, 644, 646, 1035, 136, 398, 1029, 17, 657, 403, 146, 229, 1030, 659, 660, 661, 662, 196]
1993,
[631, 633, 634, 888, 513, 391, 129, 179, 638, 759, 639, 920, 394, 760, 395, 131, 645, 180, 647, 396, 649, 764, 137, 765, 504, 505, 139, 140, 141, 193, 399, 400, 949, 293, 402, 506, 507, 183, 258, 852, 656, 194, 195, 147, 508, 768, 149, 150, 151]
1994,
[982, 449, 509, 584, 155, 260, 261, 450, 311, 53, 156, 157, 451, 932, 585, 869, 983, 312, 54, 586, 158, 262, 55, 159, 870, 587, 263, 588, 589, 264, 160, 187, 161, 452, 590, 313, 314, 315, 56, 316, 453, 454, 984, 162, 317, 244, 188, 57, 265, 266, 14, 871, 455, 591, 245, 318, 985, 986, 816, 909, 319, 267, 58, 772, 59, 60, 320, 61, 62, 746, 321, 592, 872, 63, 910, 322, 517, 873, 163, 518, 987, 323, 988, 593, 64, 211, 324, 594, 933, 456, 325, 246, 911, 326, 912, 913, 595, 914, 65, 66]
1995,
[701, 817, 327, 675, 164, 165, 934, 67, 457, 328, 68, 874, 268, 69, 519, 329, 875, 70, 935, 330, 520, 596, 212, 989, 331, 676, 231, 269, 677, 71, 990, 458, 332, 818, 597, 459, 166, 876, 333, 72, 460, 247, 334, 248, 598, 73, 167, 936, 213, 819, 74, 75, 335, 336, 337, 773, 678, 338, 189, 461, 270, 937, 679, 938, 339, 521, 680, 340, 76, 939, 991, 341, 342, 462, 77, 702, 463, 747, 720, 249, 343]
1996,
[992, 344, 820, 345, 78, 190, 214, 877, 821, 79, 599, 600, 80, 822, 878, 346, 993, 601, 823, 721, 722, 347, 348, 522, 81, 82, 748, 824, 749, 750, 464, 83, 465, 602, 215, 994, 703, 216, 466, 825, 995, 940, 349, 523, 603, 996, 997, 524, 998, 350, 351, 271, 604, 879, 272, 826, 467, 999, 525, 605, 273, 468, 469, 217, 352, 353, 274, 84, 681, 85, 470, 827, 275, 1039, 471, 941, 526, 1000, 472, 473, 474, 168, 527, 915, 169, 528, 250, 828, 475, 354, 355, 276, 356, 357, 218, 529, 358, 86, 606, 277, 87, 942, 88, 359, 360, 361, 170, 607, 89, 90, 219, 91, 704, 530, 15]
1997,
[667, 92, 93, 1001, 362, 476, 191, 94, 251, 531, 608, 829, 830, 363, 364, 609, 1002, 1003, 365, 1040, 1004, 943, 1005, 366, 477, 610, 916, 532, 367, 95, 96, 880, 478, 533, 252, 368, 1041, 534, 97, 1006, 1007, 831, 751, 369, 171, 253, 220, 1008, 98, 192, 370, 371, 917, 99, 682, 100, 683, 278, 172, 535, 832, 611, 668, 221, 705, 706, 101, 279, 833, 612, 752, 834, 280, 102, 1009, 1010, 372, 103, 373, 281, 374, 282, 881, 375, 1011, 835, 536, 510, 836, 613, 254, 283, 284, 376, 104, 1012, 882, 753, 479, 944, 537, 173, 837, 838, 105, 106, 232, 1013, 614, 1014, 707, 107, 538, 108, 109]
1998,
[480, 377, 255, 378, 839, 615, 754, 945, 684, 1042, 1015, 708, 16, 539, 616, 617, 618, 481, 840, 669, 379, 110, 482, 174, 111, 380, 946, 381, 619, 286, 1043, 222, 620, 112, 540, 709, 841, 1016, 223, 842, 755, 483, 621, 256, 484, 1044, 485, 486, 883, 884, 382, 113, 257, 541, 843, 114, 487, 488, 844, 383, 710, 542, 711, 115, 489, 490, 622, 491]
1999,
[285, 712, 1045, 175, 492, 1033, 713, 116, 384, 845, 623, 176, 117, 118, 685, 287, 846, 1017, 624, 1018, 493, 119, 288, 177, 714, 1019, 494, 120, 385, 289, 715, 121, 233, 386, 1020, 756, 625, 1021, 1022, 224, 387, 847, 626, 290, 122, 1023, 627, 628, 848, 511, 495, 496, 497, 849, 885, 716, 670, 388, 629, 498, 630, 717, 718, 543, 499, 500, 1034, 850, 1046, 389, 1024, 1025, 123, 544, 390, 512, 851, 719, 225, 124, 1026, 1027, 757, 1028, 545, 501, 502, 886, 125, 503, 947, 887, 126, 758, 769]
2000,
[546, 953, 18, 294, 954, 723, 855, 259, 724, 955, 19, 514, 406, 197, 20, 664, 775, 295, 21, 22, 956, 407, 725, 23, 547, 296, 856, 857, 776, 24, 858, 297, 923, 408, 409, 410, 859, 957, 234, 298, 198, 687, 299, 958, 548, 726, 199, 959, 200, 411, 860, 688, 25, 26, 963]
2001,
[960, 27, 961, 201, 727, 412, 891, 413, 152, 28, 414, 415, 728, 861, 416, 29, 862, 863, 1031, 777, 515, 417, 418, 729, 516, 419, 924, 962, 730, 420, 549, 778, 550, 300, 421, 301, 30, 731, 31, 13, 1036, 32, 732, 689, 302, 303, 925, 779, 864, 422, 865, 304]
2002,
[305, 153, 665, 306, 780, 733, 892, 666, 893, 33, 34, 35, 36, 964, 423, 37, 202, 734, 965, 894, 203, 866, 154, 926, 673, 735, 424, 966, 425, 736, 867, 204, 551, 38, 781, 737, 738, 39, 868, 1047, 1032, 307, 690, 1037, 1038, 426, 40, 895, 41]
2003,
[782, 235, 42, 43, 427, 783, 927, 739,
236, 967, 784, 308, 44, 205, 428, 785, 552, 45, 309, 237, 928,
206, 238]
2004, 310]
[968, 429, 553, 969, 786, 46, 896, 207,
2005,
[208, 787, 970, 971, 430, 972, 691, 692]
2006, 47, 693, 435]
[973, 431, 239, 554, 432, 433, 434, 974,
2007, 555, 694, 48]
[770, 771, 436, 788, 437, 438, 975, 439,
2008,
[556, 695, 440, 557, 740, 49, 789, 240,
558, 441, 741, 442, 241]
2009, 443, 561, 791]
[976, 790, 696, 742, 242, 559, 897, 560,
2010, 794, 795]
[697, 977, 562, 563, 792, 698, 793, 699,
2011,
[898, 796, 564, 978, 899, 900, 797, 444,
901, 798, 799, 902, 979, 800, 801, 802, 903, 50]
Annual index
47
2012,
[445, 803, 243, 743, 904, 51, 905, 446,
906, 209, 804, 907, 805, 806, 52, 744, 447, 807, 210, 565,
566, 929, 808, 745]
2013,
[809, 186, 930, 931, 810, 980, 811,
1048, 908, 567, 568, 569, 812, 570, 571, 572, 573, 574, 575,
981, 230, 813, 448, 576, 814, 700, 577]
2014,
[578, 579, 580]
2015,
[581, 815, 582, 674, 583]
48
Genetic algorithms in mathematics and statistics
4.9 Geographical index The following table gives references to the contributions by country.
· Algeria: [862, 865, 695, 562] · Argentina: [968, 447] · Australia: [636, 69, 818, 605, 611, 510, 283, 284, 1013, 617, 622, 116, 1022, 290, 496, 501, 125, 778, 731, 31, 781, 426, 44, 558, 801] · Austria: [663, 604, 668, 1019, 629, 666, 972] · Bangladesh: [794] · Belgium: [686, 921, 920, 819, 602, 271, 273, 277, 718, 811] · Brazil: [197, 190, 941, 191, 833, 1042, 380, 288, 687, 688, 435, 442, 444, 51, 805, 210] · Bulgaria: [221] · Byelorussia: [171] · Canada: [872, 874, 520, 213, 521, 79, 355, 358, 170, 682, 683, 495, 1036, 665, 965, 204] · China: [274, 601, 468, 474, 527, 609, 278, 615, 619, 710, 542, 493, 494, 1023, 390, 719, 124, 546, 548, 412, 779, 739, 967, 309, 553, 431, 434, 441, 561, 791, 901, 798, 903, 50, 803, 566, 808, 810, 567, 568, 230, 814, 700, 581, 582, 583, 269, 248, 751, 286, 925, 792] · Croatia: [678, 544] · Cuba: [340, 378] · Denmark: [312, 321, 328] · Egypt: [804] · Finland: [853, 854, 405, 313, 984, 162, 518, 249, 348, 994, 995, 997, 998, 354, 361, 15, 1041, 172, 536, 255, 487, 175, 295, 298, 958, 420, 32, 737, 969, 786, 310, 970, 430, 770, 771, 975, 48, 741, 793, 744, 565, 745] · France: [672, 393, 504, 505, 53, 869, 870, 873, 875, 747, 522, 94, 610, 368, 99, 279, 492, 122, 388, 498, 406, 303, 423, 867, 43, 783, 436, 788, 443, 898, 573] · Germany: [1037, 185, 182, 178, 397, 401, 181, 634, 764, 263, 264, 163, 325, 913, 677, 332, 721, 825, 352, 87, 704, 829, 364, 880, 705, 372, 281, 881, 836, 104, 479, 707, 840, 111, 843, 1033, 846, 714, 848, 947, 775, 863, 550, 304, 894, 308, 692, 698, 243, 907, 674] · Ghana: [580] · Greece: [935, 1001, 282, 946, 815] · Hungary: [167, 92, 482, 727, 39] · Iceland: [578] · India: [633, 391, 656, 509, 680, 599, 834, 280, 374, 382, 500, 549, 30, 551, 38, 438, 439, 740, 697, 699, 564, 800] · Iran: [47, 556, 696, 796, 802, 209, 807, 571] · Ireland: [813, 560] · Israel: [1011, 385, 974] · Italy: [425, 142, 260, 878, 464, 169, 475, 916, 105, 754, 842, 408, 411, 28, 861, 202, 785, 208, 554, 432, 976, 977, 978, 979, 905, 908, 569]
· Japan: [956, 198, 307, 398, 508, 149, 150, 151, 584, 54, 158, 453, 871, 319, 59, 324, 456, 65, 66, 457, 68, 458, 459, 74, 461, 991, 750, 216, 466, 524, 217, 84, 275, 1039, 471, 168, 276, 86, 89, 367, 96, 252, 369, 1008, 373, 375, 173, 232, 1043, 620, 1044, 485, 486, 177, 121, 386, 1021, 387, 717, 1034, 1026, 21, 547, 296, 856, 297, 415, 734] · Kuwait: [343, 22, 424] · Latvia: [222] · Lebanon: [832] · Lithuania: [924] · Malaysia: [445, 743] · Marocco: [477] · Mexico: [623, 1018, 757, 1028, 758, 954, 963, 973, 52] · New Zealand: [291] · Norway: [489, 491] · Poland: [590, 331, 82, 531, 192, 101, 708, 481, 113, 711, 389, 545, 725, 732, 36, 41, 971] · Portugal: [993, 1006, 669, 484, 693] · Romania: [305, 327, 992, 1014, 618, 384, 685, 624] · Russia: [651, 652, 370, 535, 13] · Saudi Arabia: [345] · Singapore: [395, 748, 1003, 483, 1024, 409] · Slovenia: [223, 630] · South Africa: [196, 507, 738] · South Korea: [939, 341, 462, 703, 1040, 1004, 534, 103, 1012, 1017, 224, 225, 1027, 694, 795, 806, 579] · Spain: [18, 157, 76, 823, 95, 533, 917, 379, 119, 715, 233, 953, 955, 407, 960, 152, 35, 895, 896, 433, 742, 559, 563, 186, 812] · Sweden: [292, 137, 402, 626, 931] · Switzerland: [88, 90, 365, 100, 106, 107, 108, 109, 490, 176, 299, 302] · Taiwan: [318, 336, 189, 342, 478, 1010, 376, 512, 234, 891, 673, 239, 440, 557, 574] · Thailand: [117] · The Czech Republic: [136, 749, 465, 503, 154, 926, 460, 334, 722, 353, 681, 470, 1031, 706] · The Netherlands: [855, 923, 392, 631, 589, 985, 71, 667, 366, 882, 377, 784, 787] · The Slovak Republic: [371, 543] · Turkey: [606, 753, 730, 736, 437, 929, 448] · Ukraina: [98] · United Kingdom: [918, 640, 17, 513, 394, 131, 765, 139, 183, 258, 454, 244, 57, 14, 245, 772, 62, 988, 593, 64, 246, 595, 701, 164, 268, 70, 330, 596, 247, 75, 702, 463, 344, 603, 879, 467, 525, 472, 473, 251, 608, 1002, 831, 220, 944, 839, 945, 616, 709, 755, 114, 488, 712, 716, 123, 851, 294, 259, 20, 664, 410, 25, 26, 29, 301, 893, 33, 782, 42, 236, 45, 238, 555, 790, 900, 446]
Geographical index · United States: [200, 635, 654, 655, 671, 133, 653, 130, 134, 135, 889, 643, 890, 132, 226, 774, 922, 184, 766, 637, 641, 642, 761, 762, 763, 644, 646, 1035, 657, 403, 146, 1030, 659, 660, 661, 662, 888, 179, 759, 180, 647, 396, 140, 141, 399, 400, 949, 293, 506, 852, 195, 155, 261, 311, 932, 585, 983, 586, 262, 55, 159, 587, 588, 160, 187, 161, 452, 315, 56, 316, 317, 266, 591, 986, 816, 909, 58, 60, 320, 746, 592, 63, 910, 322, 517, 987, 323, 211, 594, 933, 911, 326, 912, 914, 675, 165, 934, 67, 519, 329, 989, 676, 231, 166, 876, 72, 598, 73, 936, 337, 773, 338, 270, 937, 679, 938, 339, 77, 820, 78, 214, 877, 821, 600, 822, 824, 83, 215, 940, 349, 996, 826, 827, 526, 1000, 915, 528, 250, 828, 356, 218, 942, 360, 607, 219, 91, 530, 93, 362, 830, 943, 1005, 532, 97, 1007, 253, 612, 752, 613, 254, 480, 684, 1015, 16, 110, 381, 112, 841, 1016, 621, 256, 883, 884, 257, 844, 115, 285, 845, 118, 287, 120, 1020, 756, 625, 847, 627, 628, 511, 849,
49 499, 850, 1046, 886, 887, 126, 723, 19, 23, 857, 776, 24, 858, 859, 726, 199, 959, 860, 961, 728, 416, 777, 417, 418, 729, 419, 300, 421, 689, 422, 780, 733, 34, 37, 203, 866, 868, 1047, 690, 1038, 40, 235, 427, 927, 205, 428, 552, 237, 928, 206, 429, 46, 207, 789, 240, 241, 242, 897, 899, 797, 902, 904, 809] · Unknown country: [982, 449, 450, 451, 455, 817, 990, 81, 523, 469, 529, 476, 363, 102, 537, 837, 838, 538, 539, 540, 541, 383, 1045, 713, 289, 497, 885, 670, 1025, 502, 769, 724, 514, 957, 27, 201, 413, 414, 515, 516, 962, 153, 306, 892, 964, 735, 966, 1032, 49, 906, 930, 980, 1048, 570, 572, 981, 576, 577] · Venezuela: [346, 350, 174] · Yugoslavia: [614, 864]
50
Genetic algorithms in mathematics and statistics
Bibliography [1] John H. Holland. Genetic algorithms. Scientific American, 267(1):44­50, 1992. ga:Holland92a. [2] Jarmo T. Alander. An indexed bibliography of genetic algorithms: Years 1957-1993. Art of CAD Ltd., Vaasa (Finland), 1994. (over 3000 GA references). [3] David E. Goldberg, Kelsey Milman, and Christina Tidd. Genetic algorithms: A bibliography. IlliGAL Report 92008, University of Illinois at Urbana-Champaign, 1992. ga:Goldberg92f. [4] N. Saravanan and David B. Fogel. A bibliography of evolutionary computation & applications. Technical Report FAU-ME-93-100, Florida Atlantic University, Department of Mechanical Engineering, 1993. (ftp: //magenta.me.fau.edu/pub/ep-list/bib/EC-ref.ps.Z) ga:Fogel93c. [5] Thomas BaЁck. Genetic algorithms, evolutionary programming, and evolutionary strategies bibliographic database entries. (personal communication) ga:Back93bib, 1993. [6] Thomas BaЁck, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992. ga:Schwefel92d. [7] David L. Hull. Uncle Sam wants you. Science, 284(5417):1131­1133, 14. May 1999. [8] Leslie Lamport. LATEX: A Document Preparation System. User's Guide and Reference manual. AddisonWesley Publishing Company, Reading, MA, 2 edition, 1994. [9] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming Language. AddisonWesley Publishing Company, Reading, MA, 1988. [10] Diane Barlow Close, Arnold D. Robbins, Paul H. Rubin, and Richard Stallman. The GAWK Manual. Cambridge, MA, 0.15 edition, April 1993. [11] Jarmo T. Alander. Indexed bibliography of genetic algorithms in economics. Report 94-1-ECO, University of Vaasa, Department of Information Technology and Production Economics, 1995. gaECObib http: //www.uva.fi/\~TAU/reports/report94-1/ga{ECO}bib.pdf. [12] Jarmo T. Alander. Indexed bibliography of genetic algorithms in operations research. Report 94-1-OR, University of Vaasa, Department of Information Technology and Production Economics, 1995. gaORbib http://www.uva.fi/\~TAU/reports/report94-1/ga{OR}bib.pdf. [13] Valeri G. Labunets, Ekaterina V. Rundblad-Labunets, and Jaakko T. Astola. Is the brain a Clifford algebra quantum computer? In Mario N. Armenise, editor, Materials and Devices for Photonic Circuits II, volume SPIE-4453, pages 134­145, ?, November 2001. The International Society for Optical Engineering. * www/SPIE Web ga01aVLabunets. [14] I. Soto and R. A. Carrasco. Searching of convolutional codes on ring of integers modulo-q using genetic algorithms. In ?, editor, Extended Synopses of the Third UK/Australian International Symposium on DSP for Communications Systems, pages 49­51, Coventry (UK), 12.-14. December 1994. Lancaster University (UK). * CCA 61014/96 ga94aSoto. [15] Jarmo T. Alander, Ghodrat Moghadampour, and Jari Ylinen. Solving the second order equation using genetic programming. In Alander [1049], pages 215­218. (ftp://ftp.uwasa.fics/2NWGA/Ghodrat2.ps.Z) ga96fAlander. [16] D. B. Fogel and P. J. Angeline. Evaluating alternative forms of crossover in evolutionary computation on linear-systems of equations. In Proceedings of the Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation, pages 56­62, San Diego, CA, 20.-22. July 1998. SPIE ­ International Society for Optical Engineering, Belligham. P83323 ga98aDBFogel. [17] Nicholas J. Radcliffe. The algebra of genetic algorithms. Technical Report TR-92-11, Edinburgh Parallel Computing Centre, 1992. (to appear in Annals of Mathematics and Artificial Intelligence; ftp://ftp. epcc.ed.ac.uk/pub/tr/92/tr9211.ps.Z) ga:Radcliffe92b. 51
52
Genetic algorithms in mathematics and statistics
[18] A. Berlanga, P. Isasi, A. Sanchis, and J. M. Molina. Uniform coevolution for solving the density classification problem in cellular automata. page 383, 2000. ga00aABerlanga. [19] Cristopher Moore and James P. Crutchfield. Quantum automata and quantum grammars. Theoretical Computer Science, 237(?):275­306, ? 2000. ga00aCMoore. [20] Daryl Bradley, Cesar Ortega-Sanchez, and Andy Tyrrell. Embryonics + immunotronics: A bio-inspired approach to fault tolerance. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 215­223, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aDarylBradley. [21] H. Kajisha and T. Saito. Synthesis of self-replication cellular-automata using genetic algorithms. In S. Amari, C. L. Giles, M. Gori, and V. Piuri, editors, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, volume 5, pages 173­177, Como, Italy, 24.-27.July 2000. IEEE Computer Soc., Los Alamitos. P90182 ga00aHKajisha. [22] I. Ahmad and M. K. Dhodhi. State assignment of finite-state machines. IEE Proceedings - Computer and Digital Techniques, 147(1):15­22, January 2000. ga00aIAhmad. [23] Justin Werfel, Melanie Mitchell, and James P. Crutchfield. Resource sharing and coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Computation, 4(4):388­393, November 2000. ga00aJWerfel. [24] Michael Korkin, Gary Fehr, and Gregory Jeffery. Evolving hardware on a large scale. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 173­181, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aMKorkin. [25] Yingxu Yang and S. A. Billings. Extracting Boolean rules from CA patterns. IEEE Transactions on Systems, Man, and Cybernetics, 30(4):573­581, August 2000. ga00bYYang. [26] Yingxu Yang and S. A. Billings. Neighbourhood detection and rule selection from cellular automata patterns. IEEE Transactions on Systems, Man, and Cybernetics, 30(6):840­847, November 2000. ga00cYYang. [27] Alberto Bertoni and Marco Carpentieri. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 262(1-2):69­81, 6. July 2001. www /Elsevier ga01aABertoni. [28] Eleonora Bilotta and Pietro Pantano. Observations on complex multi-state CAs. In J. Kelemen and P. Sosґik, editors, Advances in Artificial Life, 6th European Conference, ECAL 2001, volume LNAI of 2159, pages 226­235, Prague (Czech Republic), 10.-14. September 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aEBilotta. [29] Gґeza Toґth and Craig S. Lent. The role of correlation in the operation of quantum-dot cellular automata. In Veikko Porra, Martti Valtonen, Iiro Hartimo, Olli Simula, and Timo Veijola, editors, Proceedings of the 15th European Conference on Circuit Theory and Design, ECCTD'01, volume I, pages 17­20, Espoo (Finland), 28.-31. August 2001. Helsinki University of Technology, Department of Electrical and Communications Engineering, Electronic Circuit Design Laboratory, Report 33. ga01aGezaToth. [30] S. Chattopadhyay. Low power state assignment and flipflop selection for finite state machine synthesis-- a genetic algorithm approach. IEE Proceedings, Computer and Digital Techniques, 148(4/5):147­151, July/September 2001. ga01aSChattopadhyay. [31] Teck L. Hoo, Andrew Ting, Erin O'Neill, Andrew G. Allison, and Derek Abbott. Real life: cellular automaton for investigating competition between pleiotropy and redundancy. In Neil W. Bergmann, editor, Electronics and Structures for MEMS II, volume SPIE-4591, pages 380­390, ?, November 2001. The International Society for Optical Engineering. * www/SPIE Web ga01aTLHoo. [32] Ville Bergholm. Quantum cellular automate. In Tero T. HeikkilaЁ, Mikio Nakahara, and Martti M. Salomaa, editors, Quantum Computing, Physical Realizations, Report Series, Nro TKK-F-A810, pages 283­289. Helsinki University of Technology, Materials Physics Laboratory, Espoo (Finland), 2001. ga01aVilleBergholm. [33] David Basanta, Mark A. Miodownik, Elizabeth A. Holm, and Peter J. Bentley. Designing the internal architecture of metals using a genetic algorithm. In ?, editor, Computer-Based Design, Engineering Design Conference 2002, pages 349­355, ?, 2002. Professional Engineering Publishing Ltd, London. [42] ga02aDavidBasanta. [34] E. M. Rauch, H. Sayama, and Y. Bar-Yam. Relationship between measures of fitness and time scale in evolution. Physical Review Letters, 88(22):228101­1­4, 3. June 2002. ga02aEMRauch.
Bibliography
53
[35] F. Jimґenez-Morales, Melanie Mitchell, and James P. Crutchfield. Evolving one dimensional cellular automata to perform non-trivial collective behavior task: one case study. In P. M. A. Sloot, C. J. Kenneth Tan, J. J. Dongarra, and A. G. Hoekstra, editors, Computational Science - ICCS 2002, International Conference, volume LNCS of 2329, pages 793­802, Amsterdam (The Netherlands), 21.-24. April 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02aFJimenez-Morales. [36] Franciszek Seredynґski and Anna Swieёcicka. Immune-like system approach to cellular automata-based scheduling. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Waґsniewski, editors, Parallel Processing and Applied Mathematics, 4th International Conference, PPAM 2001, volume LNCS of 2328, pages 626­ 633, Naleёczoґw, (Poland), 9.-12. September 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02aFSeredynski. [37] Gerald F. Joyce. Booting up life. Nature, 420(6913):278­279, 21. November 2002. ga02aGFJoyce. [38] Niloy Ganguly, Pradipta Maji, Arijit Das, Biplab K. Sikdar, and P. Pal Chaudhuri. Characterization on non-linear cellular automata model for pattern recognition. In N. R. Pal and M. Sugeno, editors, Advances in Soft Computing - AFSS 2002, 2002 AFSS International Conference on Fuzzy Systems, volume LNAI of 2275, pages 214­220, Calcutta (India), 3.-6. February 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02aNGanguly. [39] Pґeter Szaboґ, Istvaґn Scheuring, Tamaґs Czaґraґn, and EoЁrs Szathmaґry. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature, 420(6913):340­343, 21. November 2002. ga02aPeterSzabo. [40] Yoshiyuki Inagaki. On synchronized evolution of the network of automata. IEEE Transactions on Evolutionary Computation, 6(2):147­158, April 2002. ga02aYInagaki. [41] Franciszek Seredynґski and Albert Y. Zomaya. Coevolution and evolving parallel cellular automata-based scheduling algorithms. In P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and Marc Schoenauer, editors, Artificial Evolution, 5th International Conference, Evolution Artificielle, EA 2001, volume LNCS of 2310, pages 362­375, Le Creusot (France), 29.-31. October 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02bFSeredynski. [42] David Basanta, Peter J. Bentley, Mark A. Miodownik, and Elizabeth A. Holm. Evolving cellular automata to grow microstructures. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 1­10, Essex (UK), 14.-16. April 2003. SpringerVerlag, Berlin. ga03aDavidBasanta. [43] Emmanuel Sapin, Olivier Bailleux, and Jean-Jacques Chabrier. Research of a cellular automaton simulating logic gates by evolutionary algorithms. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 414­423, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aESapin. [44] Noel Hush. Molecular electronics: cool computing. Nature Materials, 2(3):134­135, March 2003. ga03aNoelHush. [45] Simon M. Lucas. Evolving finite state transducers: some initial explorations. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 130­141, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aSMLucas. [46] Jason W. Horihan and Yung-Hsiang Lu. Improving FSM evolution with progressive fitness functions. In Proceedings of the 14th ACM Great Lakes Symposium on VLSI, pages 123­126, Boston, MA, ? 2004. ACM Press, New York. ga04aJWHorihan. [47] Samira Tasharofi, Sepand Ansari, and Marjan Sirjani. Generating test cases for constraint automata by genetic symbiosis algorithm. In ?, editor, Formal Methods and Software Engineering, volume 4260 of Lecture Notes in Computer Science, pages 478­493, ?, ? 2006. Springer, Berlin. www Springer ga06aSTasharofi. [48] Timo Mantere. Object and pose recognition with cellular genetic algorithm. In David P. Casasent, Ernest L. Hall, and Juha RoЁning, editors, Intelligent Robots and Computer Vision XXV: Algorithms, Techniques, and Active Vision, volume SPIE-6764, pages 67640N­1­10, Boston, MA, 9. -11. September 2007. The International Society for Optical Engineering, Bellingham, WA. ga07bTimoMantere. [49] Nelson Josue Fernandez-Parada. Evolutionary computation for population dynamics of Paramecium caudatum in experimental conditions by means of celular automatons. In Proceedings of the International Conference on Ecological informatics 6, pages ­, Cancun (Mexico), 2.-5. December 2008.
54
Genetic algorithms in mathematics and statistics
Google ga08aNelsonJosueFernandez-Parada http://conference.ecoinformatics.org/index.php/ isei/isei6/index.html. [50] Yong jiu Feng, Yan Liu, and Zhen Han. [land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes]. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 22(4):957­963, April 2011. (in Chinese) PubMed ga11aYong-jiuFeng http://www.ncbi.nlm.nih.gov/pubmed/21774318. [51] Erinaldo L. Siqueira Juґnior, Tiago A. E. Ferreira, and Marcelo G. daBLSilva. Discovering the rules of an elementary one-dimensional automaton. In H. Yin et al, editor, Proceedings of the IDEAL 2012, Intelligent Data Engineering and Automated Learning, volume 7435 of Lecture Notes in Computer Science, pages 312­319. Springer-Verlag, Heidelberg, 2012. ga12aErinaldoLSJunior http://www.springerlink.com/ content/m8pn4x33prjj057w/. [52] Jesus Savage, Rodrigo Savage, Marco Morales-Aguirre, and Angel Kuri-Morales. Adaptive FPGA-based robotics state machine architecture derived with genetic algorithms. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA'12), pages 267­267, ?, ? 2012. ACM, New York. ACM /www ga12aJesusSavage http://dl.acm.org/citation.cfm?id=2145746& preflayout=tabs. [53] Emmanual Chiva and Philippe Tarroux. Studying genotype-phenotype interactions: a model of the evolution of the cell regulation network. In Davidor et al. [1050], pages 26­35. (anonymous ftp at site ftp.ens.fr file pub/reports/biologie/BIENS PPSN94.ps.Z) ga94aChiva. [54] Hugo de Garis. CAM-BRAIN the genetic programming of an artificial brain which grows/evolves at electronic speeds in a cellular automata machine. In ICEC'94 [1051], pages 337­339b. ga94aGaris. [55] Kevin Henry. Evolving cellular automata using a two-dimensional genetic algorithm. In Koza [1052], page ? conf.prog ga94aHenry. [56] Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Evolving cellular automata to perform computations: mechnisms and impediments. Physica D, 75(1-3):361­391, 1. August 1994. (Oji International Seminar on Complex Systems ­ from Complex Dynamical Systems to Sciences of Artificial Reality, Numazu, Japan, 5.-8. April 1993) * CCA 79253/94 ga94aMitchell. [57] P. Sahota, M. F. Daemi, and D. G. Elliman. Training genetically evolving cellular automata for image processing. In Proceedings of the 1994 International Symposium on Speech, Image Processing and Neural Networks (ISSIPNN'94), volume 2, pages 753­756, Hong Kong, 13.-16. April 1994. IEEE, New York. * EEA 96110/94 ga94aSahota. [58] Afra Zomorodian. Context-free language induction by evolution of deterministic push-down automata using genetic programming. In Koza [1052], page ? conf.prog ga94aZomorodian. [59] Hugo de Garis. Growing an artificial brain: The genetic programming of million-neural-net-module artificial brains with trillion cell cellular automata machines. In A. V. Sebald and Lawrence J. Fogel, editors, Proceedings of the Fourth Annual Conference on Evolutionary Programming (EP94), page ?, San Diego, CA, 24.-26. February 1994. World Scientific, Singapore. conf.prog ga94adeGaris. [60] N. Baba and H. Handa. Genetic algorithm applied to maze passing problem of mobile robot - a comparison with the learning performance of the hierarchical structure stochastic automata. In IEEE94/NN [1053], pages ­. ga94bBaba. [61] Marco Colombetti. Adaptive agents: Steps to an ethology of the artificial. In F. Masulli, P. Morasso, and A. Schenone, editors, Neural Networks in Biomedicine, page ? World Scientific, Singapore, 1994. (in press) Colombetti ga94bColombetti. [62] Rajarshi Das, Melanie Mitchell, and James P. Crutchfield. A genetic algorithm discovers particle computation in cellular automata. In Davidor et al. [1050], page ? conf. prog. ga94bDas. [63] Hugo de Garis. Implementation and performance-scaling issues concerning the genetic programming of a cellular automata based artificial brain. In IEEE94/NN [1053], pages ­. ga94bGaris. [64] M. Shanahan. Evolutionary automata. In ?, editor, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 388­393, Cambridge, MA, USA, 6.-8. July 1994. MIT Press, Cambridge, MA. * CCA46368/96 ga94bShanahan. [65] Hugo de Garis. An artificial brain: ATR's CAM-brain project aims to build/evolve an artificial brain with a million neural net modules inside a trillion cell cellular automata machine. New Generation Computing Journal, 12(2):?, ? 1994. [1054] De Garis ga94hdeGaris.
Bibliography
55
[66] Hugo de Garis. CAM-BRAIN: Growing an artificial brain with a million neural net modules inside a trillion cell cellular automata machine. Journal of the Society of Instrument and Control Engineers, 33(2):?, ? 1994. De Garis ga94ideGaris. [67] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson. Evolving globally synchronized cellular automata. In Eshelman [1055], page ? prog ga95aDas. [68] Fei Qian and H. Hirata. A genetic operator for the two dimensional stochastic learning cellular automata. In ?, editor, Proceedings of the 27th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, volume ?, pages 217­223, Beppu, Japan, 31. oct-2. nov ? 1995. ISCIE Inst. Syst. Control & Inf. Eng., Kyota (Japan). CCA64531/97 ga95aFeiQian. [69] David G. Green. Punctuated equilibria and evolutionary computation. In Proceedings of the 1st Korea Australia Joint Workshop on Evolutionary Computation, pages 35­42, Taejon (Korea), 26.-29. September 1995. The Korea Science Engineering Foundation, The Australian Academy of Science, The Australian Academy of Technological Sciences and Engineering, KAIST, Korea. ga95aGreen. [70] Paul Harrald. Practical handbook of genetic algorithms. In Chambers [1056], chapter 13. Evolving behaviour in repeated 2-player games, pages 459­496. ga95aHarrald. [71] Marc M. Lankhorst. A genetic algorithm for the induction of pushdown automata. In ICEC'95 [1057], pages 741­746. prog. ga95aLankhorst. [72] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson. Evolving globally synchronized cellular automata. Working Paper 95-01-005, Santa Fe Institute, 1995. (http://www.santafe. edu/projects/evca/evabstracts.html or ftp://ftp.santafe.edu/pub/EvCA//EGSCA.ps.Z) News/Jim Crutchfield ga95aRDas. [73] Caz Taylor. Discovering patterns in two-dimensional cellular automata. In Koza [1058], page ? Koza ga95aTaylor. [74] Hugo de Garis. CAM-BRAIN the evolutionary engineering of a billion neuron artificial brain by 2001 which grows/evolves at electronic speeds inside a cellular automata machine (CAM). In Pearson et al. [1059], pages 84­87. ga95adeGaris. [75] A. E. A. Almaini, Julian F. Miller, Peter Thomson, and S. Billina. State assignment of finite state machines using agenetic algorithm. IEE Proceedings, Computers and Digital Techniques, 142(4):279­286, 1995. * CCA 71789/95 ga95bAlmaini. [76] J. M. Sanchez, A. O. Garnica, and J. Lanchares. A genetic algorithm for reducing the number of states in incompletely specified finite state machines. Microelectron. J. (UK), 26(5):463­470, 1995. CCA81916/95 ga95bSanchez. [77] Afra Zomorodian. Context-free language induction by evolution of deterministic pushdown automata using genetic programming. In Proceedings of the Genetic Programming, pages 127­133, Cambridge, MA (USA), 10.-12. November 1995. AAAI Press, Menlo Park, CA. CCA54940/96 ga95bZomorodian. [78] David Andre, Forrest H. Bennett III, and John R. Koza. Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem. In Koza et al. [1060], page ? conf.prog ga96aAndre. [79] B. John Oommen and Edward V. de St. Croix. Graph partitioning using learning automata. IEEE Transactions on Computers, 45(2):195­208, February 1996. ga96aBJOommen. [80] Scott Brave. Evolving deterministic finite automata using cellular encoding. In Koza et al. [1060], page ? conf.prog ga96aBrave. [81] Richard J. Gaylord and Kazume Nishidate. Modeling Nature, Cellular Automata Simulations with Mathematica. Springer-Verlag, Berlin, 1996. Scientific Computing World Nov 1997 ga96aGaylord. [82] A. Grocholewska-Czurylo and P. Siwak. Optimising the parameters for GA evolving of a 1-D cellular automaton. In ?, editor, Proceedings of the Third International Symposium on Methods and Models in Automation and Robotics, volume 3, pages 1075­1080, Miedzyzdroje, Poland, 10.-13. September 1996. Tech. Univ. Szczecin, Szczecin, Poland. CCA64542 ga96aGrocholewska-Czurylo. [83] John H. Miller. The coevolution of automata in the repeated prisoner's dilemma. Journal of Economic Behavior and Organization, 29(1):87­112, January 1996. ga96aJHMiller. [84] Shinobu Nagano, Yuishi Iwasaki, and Yasuo Yonezawa. Immuno fluctuate model as defense system included complexity process. In Proceedings of the 7th International Symposium on Micro Mach. Hum. Sci., pages 257­263, ?, ? 1996. IEEE, New York. * ChA 277152m/97 ga96aShinobuNagano.
56
Genetic algorithms in mathematics and statistics
[85] Moshe Sipper and Marco Tomassini. Co-evolving parallel random number generators. In Voigt et al. [1061], pages 950­959. ga96aSipper. [86] Masaharu Munetomi, Yoshiaki Takai, and Yoshiharu Sato. An application of a genetic algorithm to stochastic learning. Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), J79D-II(2):230­238, 1996. CCA37527/96 ga96bMunetomo. [87] GuЁnter Rudolph. On interactive evolutionary algorithms and stochastic mealy automata. In Voigt et al. [1061], pages 218­226. ga96bRudolph. [88] Moshe Sipper and Marco Tomassini. Generating parallel random number generators by cellular programming. International Journal of Modern Physics C, 7(2):181­190, ? 1996. ga96bSipper. [89] Masaharu Munetomo, Yoshiaki Takai, and Yoshiharu Sato. StGA: an application of a genetic algorithm to stochatic learning automata. Syst. Comput. Jpn. (USA), 27(10):68­78, 1996. CCA97215/96 ga96cMunetomo. [90] Moshe Sipper. Co-evolving non-uniform cellular automata to perform computations. Physica D, 7(2):181­ 190, ? 1996. ga96cSipper. [91] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Four problems for which a computer program evolved by genetic programming is competitive with human performance. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, page ?, Nagoya, Japan, 20.22. May 1996. IEEE, Piscataway, NJ. ga96dKoza. [92] Attila Kondacs and John Watrous. On the power of quantum finite state automata. In Proceedings of the 38th Annual Symposium on Foundattions of Computer Science, pages 66­75, ?, ? 1997. IEEE Computer Society. ga97aAKondacs. [93] A. Ugur and Michael Conrad. Structuring pattern generalization through evolutionary techniques. In Proceedings of the 6th International Conference, Evolutionary Programming VI, pages 311­321, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). CCA70665/97 ga97aAUgur. [94] B. Leblanc, Evelyne Lutton, and J.-P. Allouche. Inverse problems for finite automata: a solution based on genetic algorithms. In Proceedings of the Third European Conference on Artificial Evolution, pages 157­166, Nimes (France), 22.-24. October 1997. Springer-Verlag, Berlin (Germany). CCA37180/98 ga97aBLeblanc. [95] O. Garnica, J. Lanchares, and J. M. Sanchez. Finite state machine optimization using genetic algorithms. In Proceedings of the Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, volume ?, pages 283­289, Glasgow (UK), 2.-4. September 1997. IEE, London (UK). CCA3988/98 ga97aGarnica. [96] F. Gers, Hugo De Garis, and M. Korkin. Codi-1Bit ­ a simplified cellular-automata based neuron model. In ? [1062], pages 315­334. prog ga97aGers. [97] Jason D. Lohn and James A. Reggia. Automatic discovery of self-replicating structures in cellular automata. IEEE Transactions on Evolutionary Computation, 1(3):165­178, September 1997. ga97aJDLohn. [98] V. F. Klepikov, V. Yu. Korda, and V. A. Yamnitsky. Evolution of cellular automata. In Osmera [1063], pages 207­209. ga97aKlepikov. [99] B. Leblanc, E. Lutton, and J.-P. Allouche. Inverse problems for finite automata: a solution based on genetic algorithms. In ? [1062], pages 157­166. prog ga97aLeblanc. [100] Moshe Sipper, Marco Tomassini, and M. S. Capcarrere. Evolving asynchronous and scalable non-uniform cellular automata. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 66­70, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97aMSipper. [101] P. Siwak. GA-aided design of some linear cellular automata. In Proceedings of the Fourth International Symposium om Methods and Models in Automation and Robotics, volume 3, pages 1007­1012, Miewdzyzdroje, Poland, 26.-29. August 1997. Wydawnictwo uczelniane Politech. Szczecinskiej, Szczecin (Poland). CCA12756/98 ga97aPSiwak. [102] Peter Rees. Simulation sheds light on cooperation. Scientific Computing World, (29):25­26,29, June 1997. ga97aRees. [103] Saeyang Yang, Hajoong Kim, Youngwhan Bae, and Inhag Park. State assignment for finite state machines by genetic algorithm. J. KISS(A), Comput. Syst. Theory (South Korea), 24(9):837­845, 1997. In Korean CCA12312/98 ga97aSaeyYang.
Bibliography
57
[104] Michele Zamparelli. Genetically trained cellular neural networks. Neural Networks, 10(6):1143­1151, August 1997. ga97aZamparelli. [105] S. Chiusano, Fulvio Corno, Paolo Prinetto, and Matteo Sonza Reorda. Cellular automata for deterministic sequential test pattern generation. In Proceedings of the 15th IEEE VLSI Test Symposium, pages 60­65, Monterey, CA, 27. April 1. May 1997. IEEE, Piscataway, NJ. * www /IEEE ga97bSChiusano. [106] Moshe Sipper and Eytan Ruppin. Co-evolving architectures for cellular machines. Physica D, 99(?):428­ 441, ? 1997. ga97bSipper. [107] Moshe Sipper, Marco Tomassini, and Mathieu S. Capcarrere. Designing cellular automata using a parallel evolutionary algorithm. Nuclear Instruments & Methods in Physics Research A, 389(?):278­283, ? 1997. (Proceedings of the 5th International Workshop (AIHENP'96) on Software Engineering, Neural Nets, Genetic Algorithms, Expert Systems, Symbolic Algebra and Automatic Calculations in Physics Research UNIL-EPFL, Lausanne (Switzerland), 2.-6. Sep. 1996) ga97cSipper. [108] Moshe Sipper. The evolution of parallel cellular machines: Toward evolware. BioSystems, 42(?):29­43, ? 1997. ga97eSipper. [109] Moshe Sipper. Evolution of Parallel Cellular Machines. Springer-Verlag, Berlin, 1997. brochure ga97gSipper. [110] Hugues Juillґe and Jordan B. Pollack. Coevolutionary learning: a case study. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 251­259, Madison, WI, 24.-27. July 1998. Morgan Kaufmann Publishers, San Francisco, CA (USA). ga98aHJuille. [111] JuЁrgen Branke, Martin Middendorf, and Frerk Schneider. Improved heuristics and a genetic algorithm for finding short supersequences. OR Spektrum, 20(1):39­45, ? 1998. * www /Springer ga98aJBranke. [112] M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Application of genetically engineered finite-state-machine sequences to sequential circuit ATPG. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (USA), 17(3):239­254, 1998. CCA69564/98 ga98aMSHsiao. [113] Anna Sґwieёcicka and Franciszek Seredynґski. Multiprocessor scheduling with cellular automata. In Osmera [1064], pages 214­219. ga98aSwiecick. [114] U. J. Cao and Q. H. Wu. A cellular-automata based genetic algorithm and its application in mechanical design optimization. In Proceedings of the UKACC International Conference on Control '98, pages 1593­ 1598, Swansea, Wales, 1.-4. September 1998. IEE, Stevenage (UK). P82608 ga98aUJCao. [115] Hugues Juillґe and Jordan B. Pollack. Coevolving the "ideal" trainer: Application to the discovery of cellular automata rules. In ?, editor, Proceedings of the Third Annual Genetic Programming Conference, page ?, Madison, WI, 22.-25. July 1998. ? ga98bHJuille. [116] Terry Bossomaier, T. Cranny, and D. Schneider. A new paradigm for evolving cellular automata rules. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 169­176, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA80484/99 ga99aBossomaier. [117] P. Chongstitvatana and C. Aporntewan. Improving correctness of finite-state machine synthesis from multiple partial input/output sequences. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 262­266, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. CCA80872/99 ga99aChongstitvatana. [118] D. A. Czarnecki. Assessing operator effectiveness on finite state machines using fitness distributions. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1893­1901, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77249/99 ga99aCzarneck. [119] Francisco Jimґenes-Morales. Evolving three-dimensional cellular automata to perform a quasiperiod3 collective behavior task. Physical Review E, 60(4):4934­4940, October 1999. NASA ADS ga99aFJimenez-Morales. [120] Natalie Hammerman and Robert Goldberg. Practical handbook of genetic algorithms. In Chambers [1065], chapter 6. Algorithms to improve the convergence of a genetic algorithm with a finite state machine genome, pages 120­238. ga99aHammerman. [121] J. Oda, S. Kundu, and T. Koishi. Study of structural optimization technique using evolutionary cellular automata. JSME Int. J. A, Solid Mech. Mater. Eng. (Japan), 42(3):348­354, 1999. CCA85535/99 ga99aJOda. [122] L. Ngom, C. Baron, and J. C. Geffroy. Genetic simulation for finite state machine identification. In Proceedings of the 32rd Annual Simulation Symposium, pages 118­125, San Diego, CA (USA), 11.-15. April 1999. IEEE Computer Society Press, Los Alamitos , CA. CCA68271/99 ga99aLNgom.
58
Genetic algorithms in mathematics and statistics
[123] Vesselin K. Vassilev, Julian F. Miller, and Terence C. Fogarty. Co-evolving demes of non-uniform cellular automata for synchronisation. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 111­119, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. CCA77456/99 ga99aVassilev. [124] Yongsheng Ding and Shihuang Shao. Intelligent computation in the computerized flat knitting systems. In Nikos E. Mastorakis, editor, Proceedings of the WSES International Conferences on Mathematics and Computers in Mechanical Engineering (MCME'99), pages 491­500, Marathon, FL, 25.-29. July 1999. World Scientific Engineering Society. ga99aYongshengDing. [125] Reid Porter and Neil Bergmann. Evolving FPGA based cellular automata. In B. McKay, X. Yao, C. S. Newton, J.-H. Kim, and T. Furuhashi, editors, Simulated Evolution and Learning, Second Asia-Pacific Conference on Simulated Evolution and Learning, SEAL'98, volume LNAI of 1585, pages 114­121, Canberra (Australia), November 1999. Springer-Verlag Berlin Heidelberg. * www /Springer ga99bRPorter. [126] K. Chellapilla and D. Czarnecki. A preliminary investigation into evolving modular finite state machines. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1349­1356, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA80874/99 ga99dChellapilla. [127] Aviv Bergman and M. Kerszberg. Breeding intelligent automata. In Proceedings of the First Annual Conference on Neural Networks, pages 63­70, ?, ? 1987. ? ga:Bergman87. [128] M. Kerszberg and Aviv Bergman. The evolution of data processing abilities in competing automata. In R. M. J. Cotterill, editor, Computer simulation in brain science, pages 249­259. Cambridge University Press, New York, 1988. ga:Bergman88. [129] James P. Crutchfield and James E. Hanson. Turbulent pattern bases for cellular automata. Technical Report Report SFI-93-03-010, Santa Fe Institute, 1993. (to appear in Physica D) MMitchell93 ga:Crutchfield93a. [130] Hayong (Harry) Zhou and John J. Grefenstette. Induction of finite automata be genetic algorithms. In Proceedings of the 1986 IEEE International Conference on Systems, Man, and Cybernetics, pages 170­174, ?, ? 1986. ga:Grefenstette86b. [131] M. N. Howell, S. P. Banks, and R. F. Harrison. The application of cellular automata to genetic search in optimization theory. In ?, editor, Proceedings of the IMACS/IFAC Second Symposium on: Mathematical and Intelligent Models in System Simulation, volume 1, pages 191­197, Brussels (Belgium), 12.-16. April 1993. Univ. Libre de Bruxelles, Brussels. CCA 24833/94 ga:Harrison93a. [132] Stefan Helmreich. The historical and epistemological ground of von Neumann's theory of self-reproducing automata and theory of games. In Varela and Bourgine [1066], pages 385­391. ga:Helmreich91a. [133] A. W. Burks, B. P. Zeigler, R. A Laing, and John H. Holland. Biologically motivated automaton theory and automaton motivated biological research. In ?, editor, Proceedings of the 1974 Conference on Biologically Motivated Automata Theory, pages 1­12, ?, 1974. ? ga:Holland74a. [134] Stuart A. Kauffman and R. G. Smith. Adaptive automata based on Darwinian selection. pages 68­82. 1986. ga:Kauffman86a. [135] Stuart A. Kauffman and R. G. Smith. Adaptive automata based on Darwinian selection. Physica D, 22(?):68­82, 1986. (also as [134]) [1067] ga:Kauffman86b.
[136] Petr Kurka. Natural selection in a population of automata. In Varela and Bourgine [1066], pages 375­382. * ga:Kurka92. [137] Kristian Lindgren and Mats G. Nordahl. Evolutionary dynamics of spatial games. In ? [1068], pages 604­616. ga:Lindgren93a. [138] Marc Lipsitch. Adaptation on rugged landscapes generated by iterated local interactions of neighboring genes. In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 128­135, San Diego, 13.-16. July 1991. Morgan Kaufmann Publishers. ga:Lipsitch91. [139] Mark A. Beaumont. Evolution of optimal behaviour in networks of Boolean automata. Journal of Theoretical Biology, 165(4):455­476, 21. December 1993. ga:MABeaumont93a. [140] Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield. Revisiting the edge of chaos: Evolving cellular automata to perform computations. Technical Report Technical Report WP-93-03-014, Santa Fe Institute, 1993. (to appear in Complex Systems; ftp://ftp.santafe.edu/pub/Users/mm/rev-edge-part1.ps.Z. .rev-edge-part4.ps.Z) ga:MMitchell93a.
Bibliography
59
[141] Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Evolving cellular automata to perform computations: Mechanisms and impediments. Technical Report Working Paper 93-11-071, Santa Fe Institute, 1993. (to appear in Physica D; ftp://ftp.santafe.edu/pub/Users/mm/sfi-93-11-071.part1.ps. Zandsfi-93-11-071.part2.ps.Z) ga:MMitchell93b. [142] Fabio De Luigi and Vittorio Maniezzo. The rise of interaction - intrinsic simulation modeling of the onset of interacting behaviour. In Jean-Arcady Meyer and Stewart W. Wilson, editors, Proceedings of the First International Conference on Simulation of Adaptive Behavior: From animals to animats, pages 409­418, Paris, 24.-28. September 1991. A Bradford Book, MIT Press, Cambridge, MA. ga:Maniezzo91b. [143] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, 1966. (Edited and completed by A. W. Burks) ga:Neumann66book. [144] Pedro Paulo Balbi de Oliveira. A cellular automaton to embed genetic search. In Lynn Nadel and Daniel Stein, editors, 1991 Lectures in Complex Systems, The Proceedings of the 1991 Complex Systems Summer School, volume Lect. IV, pages 389­408, Santa Fe, NM, June 1991. Addison-Wesley, Reading, MA. ga:Oliveira91a. [145] Norman H. Packard. Adaptation toward the edge of chaos. In J. A. L. Kelso, A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems, pages 293­301. World Scientific, Singapore, 1988. MMitchell93b ga:Packard88a. [146] Sandip Sen and Janani Janakiraman. Learning to construct puhdown automata for accepting deterministic context-free languages. In Gautam Biswas, editor, Applications of Artificial Intelligence X: KnowledgeBased Systems, volume SPIE-1707, pages 207­213, Orlando, FL, 22. - 24. April 1992. The International Society for Optical Engineering. * EI A083789/92 ga:SSen92. [147] Marco Tomassini. The parallel genetic cellular automata: Application to global function optimization. In Albrecht et al. [1069], pages 385­391. ga:Tomassini93a. [148] Thomas H. Westerdale. Quasimorphisms or queeasymorphisms? In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 128­147, Indiana University, 15.-18. July 1990 1991. Morgan Kaufmann: San Mateo, CA. ga:Westerdale91b. [149] Hugo de Garis. Evolving a replicator: The genetic programming of self reproduction in cellular automata. In ? [1068], pages 274­284. ga:deGaris93h. [150] Hugo de Garis. Neurite networks: The genetic programming of cellular automata based neural nets which grow. In ?, editor, Proceedings of the International Joint Conference on Neural Networks, volume ?, page ?, Nagoya (Japan), October 1993. ? de Garis ga:deGaris93l. [151] Hugo de Garis. Artificial life: Growing an artificial brain with a million neural net modules inside a trillion cell cellular automata machine. In ?, editor, Proceedings of the 4th International Symposium on Micro Machine & Human Science, volume ?, page ?, Nagoya (Japan), October 1993. ? de Garis ga:deGaris93m. [152] Enrique Alba Torres and Sami Khuri. Applying evolutionary algorithms to combinatorial optimization problems. In V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. J.Kenneth Tan, editors, Computational Science - ICCS 2001, International Conference, volume LNCS of 2074, pages 689­700, San Francisco, CA, 28.-30. May 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aEATorres. [153] Andrzej Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization. Journal of Operational Research, 137(1):50­71, 16. February 2002. www /Elsevier ga02aAJaszkiewicz. [154] Jiri Ocenasek and Josef Schwarz. The distributed Bayesian optimization algorithm for combinatorial optimization. pages 115­120, 2002. ga02aJOcenasek. [155] David H. Ardell. TOPE and magic squares: A simple GA approach to combinatorial optimization. In Koza [1052], page ? conf.prog ga94aArdell. [156] D. W. Coit and A. E. Smith. Use of a genetic algorithm to optimize a combinatorial reliability design problem. In ?, editor, Proceedings of the Third IIE Research Conference, pages 467­472, ?, ? 1994. ? [1070] ga94aCoit. [157] Carlos Cotta Porras, Antonio Nebro, and Josґe Francisco Aldana Montes. Disen~o y evaluacioґn de tґecnicas mixtas basadas en algoritmos genґeticos y de branch-and-bound para la resolucioґn de problemas de optimizacioґn conbinatoria. Internal Reseach Technical Report LCC-ID-94/10, Universidad de Maґlaga, Departemento de Lenguajes y Ciencias de la Computacioґn, 1994. (in Spanish) Alba Torres ga94aCotta.
60
Genetic algorithms in mathematics and statistics
[158] H. Tamura, A. Hirahara, I. Hatono, and M. Umano. An approximate solution method for combinatorial optimization - a hybrid approach of genetic algorithm and Lagrange relaxation method. Transactions of the Society of Instrument and Control Engineers (Japan), 30(3):329­336, March 1994. (in Japanese) * CCA 51364/94 ga94aHTamura. [159] A. Ishigame, H. Shirai, S. Kawamoto, and T. Taniguchi. A solution of combinatorial optimization problem by uniting genetic algorithms with Hopfield's model. In IEEE94/NN [1053], pages ­. ga94aIshigame. [160] Lon-Chan Chu. Algorithms for combinatorial optimization in real-time and their automated refinements by genetics-based learning. PhD thesis, University of Illinois at Urbana-Champaign, 1994. * DAI Vol 55 No 12 ga94aLCChu. [161] David Mark Levine. A parallel genetic algorithm for the set partitioning problem. PhD thesis, Illinois Institute of Technology, 1994. (also as [1071], ftp://info.mcs.anl.gov/pub/tech{{\protect\ protect\protect\edefOT1{OT1}\let\[email protected]\relax\protect\edefcmr{cmr}\protect\edefm{m}\ protect\edefn{n}\protect\xdef\OT1/cmr/m/it/9{\OT1/cmr/m/n/9}\OT1/cmr/m/it/9\[email protected]\ [email protected]\ignorespaces\relax\protect\relax\protect\edefcmr{cmr}\protect\xdef\OT1/cmr/m/ it/9{\OT1/cmr/m/n/9}\OT1/cmr/m/it/9\[email protected]\[email protected]{_}}}reports/ANL9423.ps.Z) * DAI Vol 55 No 5 ga94aLevine. [162] Patric OЁ sterg°ard. Kombinatorinen optimointi paikallisella haulla [Combinatorial optimization with local search]. In ?, editor, VI Teollisuus- ja InsinoЁЁorimatematiikan PaЁivaЁt [Proceedings of the VI Finnish Industrial and Engineer Mathematics Days], page 1, Tampere (Finland), 23.-24. May 1994. ? (in Finnish) ga94aOstergard. [163] Sami Khuri, Thomas BЁack, and JoЁrg HeitkoЁtter. An evolutionary approach to combinatorial optimization problems. In ?, editor, Proceedings of the 22nd Annual ACM Computer Science Conference, pages 66­73, Phoenix, AZ, 8.-10. March 1994. ACM Press, New York. Back ga94bKhuri. [164] J. N. Carter. Optimal performance of genetic algorithm and stochastic hill-climbers for combinatorial optimisation. In Proceedings of the Artificial Neural Networks in Engineering (ANNIE95), volume 5, pages 339­344, St. Louis, MO, 12.-15. November 1995. ASME Press, New York, NY. CCA9083/97 ga95aCarter. [165] Arthur L. Corcoran and Roger L. Wainwright. Practical handbook of genetic algorithms. In Chambers [1056], chapter 6. Using LibGA to develop genetic algorithms for solving combinatorial optimization problems, pages 143­172. ga95aCorcoran. [166] Panos M.Pardalos, L.Pitsoulis, T. Mavridou, and M.G. C. Resende. Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In A. Ferreira and J. Rolim, editors, Proceedings of the Second International Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR'95, volume 980, pages 317­331, Lyon (France), September 1995. Springer-Verlag, Berlin. Pardalos/lop ga95aPardalos. [167] Gґabor J. Toґth, Szabolcs Koaґcs, and Andraґs LoЁrincz. Genetic algorithm with alphabet optimization. Biological Cybernetics, 73(1):61­68, June 1995. ga95aToth. [168] E. Aiyoshi, E. Ikesugi, and T. Wakutsu. Annealed types of the hysteresis machines for combinatorial optimization and their genetic acquisition of the optimal annealing schedules. Transactions of the Society of Instrument and Control Engineers (Japan), 32(5):758­767, 1996. (In Japanese) CCA69458/96 ga96bAiyoshi. [169] Alberto Colorni, Marco Dorigo, F. Maffioli, Vittorio Maniezzo, G. Righini, and M. Trubian. Heuristics from nature for hard combinatorial optimization problems. International Transactions in Operational Research, 3(1):1­21, 1996. EEA103700/96 ga96bColorni. [170] Charles Fleurent and Jacques A. Ferland. Hybrid genetic algorithms for combinational optimisation. RAIRO Rech. Oper. (France), 30(4):373­398, 1996. In French CCA18513/97 ga96cFleurent. [171] Tatiana Kalganova and Natalia Strechen. Genetic algorithm approach to find the best input variable partitioning. In Alander [1072], pages 245­254. (ftp://ftp.uwasa.fics/3NWGA/Kalganova.ps.Z) ga97aKalganova. [172] Gґabor Magyar, Mika Johnsson, and Olli Nevalainen. Genetic algorithm approach for the three-matching problem. In Alander [1072], pages 109­122. (ftp://ftp.uwasa.fics/3NWGA/Magyar.ps.Z) ga97aMagyar. [173] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Design. Engineering Design and Automation. John Wiley & Sons, New York, 1997. ga97bMGen.
Bibliography
61
[174] F. Hidrobo and J. Aguilar. Toward a parallel genetic algorithm approach based on collective intelligence for combinatorial optimization problems. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 715­720, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. CCA74551/98 ga98aHidrobo. [175] Jarmo T. Alander. Practical handbook of genetic algorithms. In Chambers [1065], chapter 13. Population size, building blocks, fitness landscape and genetic algorithm search efficiency in combinatorial optimization: An empirical study, pages 459­485. ga99aAlander. [176] P. Calegari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of evolutionary algorithms in combinatorial optimization. J. Heuristics (Netherlands), 5(2):145­158, 1999. CCA77288/99 ga99aCalegari. [177] Gengui Zhou and Mitsuo Gen. Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research, 114(1):141­152, 1. April 1999. ga99aGenguiZhou. [178] Wolfgang Banzhaf. Combinatorial optimization using genetic algorithms. In ?, editor, Proceedings of the Spring Meeting of the Physics Society of Japan, pages 430­431, ?, ? 1990. ? Back/bib/unpub ga:Banzhaf90b. [179] David Orvosh and Lawrence Davis. Shall we repair? genetic algorithms, combinatorial optimization, and feasibility constraints. In Forrest [1073], page 650. ga:Davis93c. [180] Jin-Ling Lin. An analysis of genetic algorithm behavior for combinatorial optimization problems. PhD thesis, The University of Oklahoma, 1993. * DAI Vol. 54 No. 9 ga:JLLinThesis. [181] Heinz MuЁhlenbein. Parallel genetic algorithms, population genetics and combinatorial optimization. Number 565 in Lecture Notes in Artificial Intelligence, pages 398­406, Neubiberg (Germany) and Wildbad Kreuth (Germany), 10.-11. March and 24.-28. July 1989 1991. Springer-Verlag, Berlin. ga:Muhlenbein91g. [182] Antoon Kolen and Erwin Pesch. Genetic based learning in combinatorial optimization. In P. Bock, F. J. Radermacher, and M. M. Richter, editors, Proceedings of the FAW Workshop on Adaptive Learning, pages 85­100, SchloЯ Reisensburg, GuЁnzburg (Germany), 16.-21. July 1989. Research Institute for Applied Knowledge Engineering (FAW), Ulm, Research Institute for Applied Knowledge Engineering (FAW). Back/bib/unp ga:Pesch89a. [183] Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford, 1993. ga:Reeves93book. [184] Youssef G. Saab and Vasant B. Rao. Combinatorial optimization by stochastic evolution. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(4):525­535, 1991. ga:Saab91a. [185] Hans-Michael Voigt. Evolution und Optimierung: Ein populationsgenetischer Zugang zu kombinatorischen Optimierungsproblemen. Dr. sc. techn., Academy of Sciences, Berlin, 1987. Voigt ga:VoigtThesis. [186] Fco. Alberto Campos, Alberto Cascoґn, Jesuґs Marґia Latorre, and J. Ramoґn Soler. Genetic algorithms and mathematical programming to crack the Spanish strip cipher. Cryptologia, 37:51­68, 2013. ga13aAlbertoCampos http://www.tandfonline.com/doi/pdf/10.1080/01611194.2012.660235. [187] Alex Lane. Genetic cryptography. AI Expert, 9(9):13­19, September 1994. ga94aLane. [188] F. Rubin. Comments on "cryptanalysis of knapsack ciphers using genetic algorithms". Cryptologia, 18(2):153­154, April 1994. (comments on [195]) * CCA 55700/94 ga94aRubin. [189] Feng-Tse Lin and Cheng-Yan Kao. Genetic algorithm for ciphertext-only attack in cryptanalysis. In Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 650­654, Vancouver, BC (Canada), 22.-25. October 1995. IEEE, Piscataway, NJ. EI M135879/95 ga95bF-TLin. [190] J. A. Apolinaґrio Jr., P. R. S. Mendonca, R. O. Chaves, and L. P. Calo^ba. Cryptanalysis of speech signals ciphered by TSP using annealed hopfield neural-network and genetic algorithms. In George G. Cameron, M. Hassoun, A. Jerdee, and C. Melvin, editors, Proceedings of the 39th Midwest Symposium on Circuits and Systems, volume I-III, pages 821­826, Ames, IA, 18.-21. August 1996. IEEE, New York, NY. * CCA 65571/97 P74974 ga96aApolinario. [191] J. A. Apolinaґrio Jr., P. R. S. Mendocёa, R. O. Chaves, and L. P. Calo^ba. Cryptanalysis of speech signals ciphered by TSP using annealed Hopfield neural network and genetic algorithms. In Proceedings of the 1997 39th Midwest Symposium on Circuits and Systems, volume 2, pages 821­824, Ames, Iowa, 18.-11. August 1997. IEEE, Piscataway, NJ. ga97aApolinario. [192] J. Kolodziejczyk, J. Miller, and P. Phillips. The application of genetic algorithm in cryptoanalysis of knapsack cipher. In Proceedings of Fourth International Conference Pattern Recognition and Information Processing, volume 1, pages 394­401, Minsk (Belarus), 20.-22. May 1997. Wydawnictwo Uczelnian Politech. Szczecinskiej, Szczecin, Poland. EEA86318/97 ga97aKolodzie.
62
Genetic algorithms in mathematics and statistics
[193] R. A. J. Matthews. The use of genetic algorithms in cryptanalysis. Cryptologia, 17(2):187­201, April 1993. * EEA 61898/93 ga:Matthews93a. [194] Richard Spillman, M. Janssen, B. Nelson, and M. Kepner. Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia, 17(1):31­44, January 1993. * CCA 28447/93 EEA 30473/93 ACM/93 ga:Spillman93a. [195] Richard Spillman. Cryptanalysis of knapsack ciphers using genetic algorithms. Cryptologia, 17(4):367­377, October 1993. * CCA 13745/93 ga:Spillman93c. [196] Dirk Johannes Bank van der. The use of genetic algorithms for cryptanalysis. PhD thesis, University of Pretoria, South Africa, 1992. (in Afrikaans) * DAI 53/5 ga:vdBankThesis. [197] Deborah R. Caravalho and Alex A. Freitas. A hybrid decision tree/genetic algorithm for coping with the problem of small disjuncts in data mining. pages 1061­1068, 2000. ga00aDRCaravalho. [198] Toru Tanigawa and Qiangfu Zhao. A study on efficient generation of decision trees using genetic programming. pages 1047­1053, 2000. ga00aToruTanigawa. [199] Erick Cantuґ-Paz and Chandrika Kamath. Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies. In ?, editor, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation III, volume SPIE-4120, pages 63­71, San Diego, CA, July 31. August 1. 2000. The International Society for Optical Engineering, Bellingham, WA. * A01-10408 ga00bCantu-Paz. [200] Erick Cantuґ-Paz and Chandrika Kamath. Using evolutionary algorithms to induce oblique decision trees. pages 1053­1060, 2000. ga00bECantu-Paz. [201] A. Papagelis and D. Kalles. Breeding decision trees using evolutionary techniques. In ?, editor, Proceedings of the 18th International Conference on Machine Learning, pages 393­400, ?, ? 2001. Morgan Kaufmann, San Mateo. [1074] ga01aAPapagelis. [202] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. Improving induction decision trees with parallel genetic programming. In 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, volume ?, pages 181­187, Canary Islands, Spain, 9.-11. January 2002. IEEE, Piscataway, NJ. ga02aGFolino. [203] James F. Smith, Robert D. Rhyne, and Kristin Fisher. Data mining for multiagent rules, strategies, and fuzzy decision tree structure. In Belur V. Dasarathy, editor, Data Mining and Knowledge Discovery: Theory, Tools, and Technology IV, volume SPIE-4730, pages 386­397, ?, March 2002. The International Society for Optical Engineering. * www/SPIE Web ga02aJFSmith. [204] Marek Reformat, Witold Pedrycz, and Niccolino J. Pizzi. Software quality assesment using genetic-based decision trees. In The Proceedings of the Second ASERC Workshop on Quantitative and Soft Computing based Software Engineering, pages 76­82, Banff (Canada), 18.-20. February 2002. Alberta Software Engineering Research Consortium (ASERC). ga02aMarekReformat. [205] Ping Li, Richard E. Haskell, and Darrin M. Hanna. Optimizing fuzzy decision trees using genetic algorithms. In ?, editor, Proceedings of the 2003 International Conference on Artificial Intelligence, volume ?, page ?, Las Vegas, NV, 22.-26. March 2003. ? lop /Hanna ga03aPingLi. [206] Zhiwei Fu, Bruce Golden, Shreevardhan Lele, S. Raghavan, and Edward Wasil. Genetically engineered decision trees: population diversity produces smarter trees. Operations Research, 51(6):894­907, NovemberDecember 2003. ga03aZhiweiFu. [207] Richard E. Haskell, Charles Lee, and Darrin M. Hanna. Geno-fuzzy classification trees. Pattern Recognition, 37(8):1653­1659, August 2004. ga04aREHaskell. [208] Alessandro Passaro, Flavio Baronti, and Valentina Maggini. Exploring relationships between genotype and oral cancer development through XCS. In Franz Rothlauf, editor, Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (GECCO-05), pages 147­151, Washington, D.C., 25.-26. June 2005. ACM, New York. ga05aAPassaro. [209] Hamed Gholizadeh, Mohammad Javad Valadan Zoej, and Barat Mojaradi. A decision fusion framework for hyperspectral subpixel target detection. PFG Photogrammetrie, Fernerkundung, Geoinformation Jahrgang, (3):267­280, June 2012. Google ga12aHamedGholizadeh http://www.schweizerbart.de/resources/ downloads/paper_previews/78159.pdf. [210] Mґarcio P. Basgalupp, Rodrigo C. Barros, and Duncan D. Ruiz. Predicting software maintenance effort through evolutionary-based decision trees. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, volume ?, pages 1209­1214, ?, ? 2012. ACM. ga12aMarcioPBasgalupp http://dl.acm. org/citation.cfm?id=2231966.
Bibliography
63
[211] E. V. Siegel and K. R. McKeown. Emergent linguistic rules from inducing decision trees: disambiguating discourse clue words. In Proceedings of the Twelfth National Conference on Artificial Intelligence, page ?, Seattle, WA, 31. July-4. August 1994. AAAI Press, Menlo Park, CA. Siegel ga94bSiegel. [212] Cezary Z. Janikow. A genetic algorithm for optimizing fuzzy decision trees. In Eshelman [1055], page ? prog ga95aJanikow. [213] Peter D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2(?):369­409, ? 1995. ga95aTurney. [214] Bing-Bing Chai, Xinhua Zhuang, Yunxin Zhao, and Jack Sklansky. Binary linear decision tree with genetic algorithm. In Proceedings of the 13th International Conference on Pattern Recognition, volume 4, pages 530­534, Vienna, Austria, 25.-29. August 1996. IEEE Computer Society Press, Los Alamitos, CAlifornia. EEA15561/97 ga96aB-BChai. [215] Cezary Z. Janikow. Genetic algorithm method for optimizing fuzzy decision trees. Information Sciences, 89(3-4):275­296, March 1996. ga96aJanikow. [216] K. Yoshida, Masayuki Yamamura, and Shigenobu Kobayashi. Generating Pareto optimal decision trees by GAs. In Proceedings of the 4th International Conference on Soft Computing, volume 2, pages 854­858, Fukuoka, Japan, 30. Sep-5. Oct 1996. World Scientific, Singapore. CCA58338/97 ga96aKYoshida. [217] S. Kobayashi, K. Yoshida, and M. Yamamura. Generating a set of pareto optimal decision trees by genetic algorithms. J. Jpn. Soc. Artif. Intell. (Japan), 11(5):778­785, 1996. (In Japanese) CCA226/97 ga96aSKobayashi. [218] Cezary Z. Janikow. A genetic algorithm method for optimizing fuzzy decision trees. Information Sciences (USA), 89(3-4):275­296, 1996. CCA49065/96 ga96bJanikow. [219] Cesary Z. Janikow. Genetic algorithms for pattern recognition. chapter 12. A genetic algorithm method for optimizing the fuzzy component of a fuzzy decision tree, page ? CRC Press, Boca Raton, FL, 1996. toc ga96dJanikow. [220] H. C. Kennedy, C. Chinniah, P. Bradbeer, and L. Morss. The construction and evaluation of decision trees: a comparison of evolutionary and concept learning methods. In ?, editor, Proceedings of the Evolutionary Computing on AISB International Workshop, volume ?, pages 147­161, Manchester, UK, 7.-8. April 1997. Springer-Verlag, Berlin (Germany). CCA9464/98 ga97aKennedy. [221] N. I. Nikolaev and V. Slavov. Inductive genetic programming with decision trees. In Proceedings of the 9th European Conference on Machine Learning, pages 183­190, Prague, Czech Republic, 23.-25. April 1997. Springer-Verlag, Berlin (Germany). EEA81769/97 ga97aNikolaev. [222] Yury Kornienko and Arkady Borisov. Genetics-based decision trees. In Osmera [1064], pages 42­44. ga98aKornienko. [223] V. Podforelec and P. Kokol. Evolutionary construction of medical decision trees. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 1202­1205, Hong Kong (China), 29. oct- 1. nov ? 1998. IEEE, Piscataway, NJ. CCA84679/99 ga98aPodforelec. [224] Kyoung Min Kim, Byung Jin Lee, Kyoung Lyou, and Gwi Tae Park. Design of a binary decision tree using the genetic algorithm and K-means algorithm for recognition of the defect patterns of cold mill strip. In 1999 IEEE International Fuzzy Systems Conference Proceedings. FUZZ-IEEE '99, volume 2, pages 1081­1085, Seoul, South Korea, 22.-25.August 1999. IEEE, Piscataway, NJ. * www/IEEE ga99aKMKim. [225] Y.-S. Yeun, K.-H. Lee, and Y.-S. Yang. Function approximations by coupling neural networks and genetic programming trees with oblique decision trees. Artificial Intelligence in Engineering (UK), 13(3):223­239, 1999. CCA71080/99 ga99aY-SYeun. [226] John R. Koza. Concept formation and decision tree induction using the genetic programming paradigm. In Schwefel and MaЁnner [1075], pages 124­128. ga:Koza90c. [227] J. R. Quinlan. An empirical comparison of genetic and decision-tree classifiers. In ?, editor, Proceedings of the Fifth International Conference on Machine Learning, pages 135­141, ?, ? 1988. ? ga:Quinlan88. [228] J. R. Quinlan. An empirical comparison of genetic and decision-tree classifiers. Machine Learning, 5(?):135­ 141, 1990. ga:Quinlan90a. [229] Chiharu Sano. Hybrid of (ID3 extension + backpropagation) hybrid & (case-based reasoner + Grossberg net) hybrid with economics modeling controlled by genetic algorithm. In Gautam Biswas, editor, Applications of Artificial Intelligence X: Knowledge-Based Systems, volume SPIE-1707, pages 180­194, Orlando, FL, 22. - 24. April 1992. The International Society for Optical Engineering. ga:Sano92.
64
Genetic algorithms in mathematics and statistics
[230] Xiao Yu Chen, Li Zhuang Ma, Na Chu, Min Zhou, and Yiyang Hu. Classification and progression based on CFS-GA and C5.0 boost decision tree of TCM Zheng in chronic hepatitis B. Evidence-based Complementary and Alternative Medicine : ECAM, 2013. PubMed ga13aXiaoYuChen http://www.ncbi.nlm.nih. gov/pubmed/23431345. [231] D'ondria L. Kennard. Using genetic algorithm and decision trees to produce a hybrid classification system. In Koza [1058], page ? Koza ga95aKennard. [232] T. Tsuchiya, Y. Matsubara, and M. Nagamachi. Learning the structure of decision tree for generating fuzzy rules based on genetic algorithms. Jpn. J. Fuzzy Theory Syst. (USA), 9(6):553­564, 1997. CCA77537/99 ga97bTsuchiya. [233] J. Peco, E. F. Saґnchez-Uґ beda, and T. Goґmez. Enhancing optimal transmission or subtransmission planning by using decision trees. In International Conference on Electric Power Engineering. PowerTech Budapest 99, volume ?, page 175, Budapest (Hungary), 29. August-2. September 1999. IEEE, Piscataway, NJ. ga99aJPeco. [234] Ting-Yu Chen and Chia-Yang Lin. Determination of optimum design spaces for topology optimization. Finite Elements in Analysis and Design, 36(1):1­16, 1. August 2000. * A01-10295/01 ga00aTing-YuChen. [235] David Charles Drain. Response surface methods for experiments involving correlated noise variables. PhD thesis, Arizona State University, 2003. * www /UMI ga03aDCDrain. [236] Kit Yan Chan, M. Emin Aydin, and Terence C. Fogarty. New factorial design theoretic crossover operator for parametric problem. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 22­33, Essex (UK), 14.-16. April 2003. SpringerVerlag, Berlin. ga03aKitYanChan. [237] Tor D. Wager and Thomas E. Nicholis. Optimization of experimental design in fMRI: a general framework using a genetic algorithm. NeuroImage, 18(?):293­309, ? 2003. ga03aTDWager. [238] Kit Yan Chan and Terence C. Fogarty. Experimental design based multi-parent crossover operator. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 297­306, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03bKitYanChan. [239] Ching-Chi Hsu, Ching-Kong Chao, Jaw-Lin Wang, and Jinn Lin. Multiobjective optimization of tibial locking screw design using a genetic algorithm: evaluation of mechanical performance. Journal of Orthopaedic Research, 24(?):908­916, ? 2006. ga06aChing-ChiHsu. [240] Peter A. Stubberud and Matthew Edward Jackson. A delta sigma modulator design technique using a hybrid genetic algorithm. In P. Cristea, editor, Proceedings of the Signal and Image Processing (SIP 2008) Conference, pages ­, Kailua-Kona, HI, 18.-20. August 2008. ACTA Press. * Google ga08aPAStubberud http://www.actapress.com/Abstract.aspx?paperId=33789. [241] Peter A. Stubberud and Matthew Edward Jackson. A hybrid orthogonal genetic algorithm for global numerical optimization. In Proceedings of the 19th International Conference on Systems Engineering ICSENG'08, pages 282­287, ?, ? 2008. IEEE Computer Society. * ga08bPAStubberud http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4616651&queryText%3D%28% 28Authors%3AJackson%29+AND+genetic+algorithm%29%26openedRefinements%3D*%26matchBoolean% 3Dtrue%26searchField%3DSearch+All. [242] Matthew Edward Jackson. Optimal design of discrete-time delta sigma modulators. Master's thesis, University of Nevada, Department of Electrical and Computer Engineering, 2009. ga09aMEJackson http://mej-msee-thesis.googlecode.com/svn-history/r95/document/trunk/Optimal_Design_of_ DTDSMs.pdf. [243] Bernd Anselment, Veronika Schoemig, Christopher Kesten, and Dirk Weuster-Botz. Statistical vs. stochastic experimental design: an experimental comparison on the example of protein refolding. Biotechnology Progress, 28(6):1499­1506, November-December 2012. PubMed ga12aBerndAnselment http://www.ncbi.nlm.nih.gov/pubmed/22961887. [244] Colin R. Reeves. Some non-biological metaphors for genetic algorithms. In Jarmo T. Alander, editor, Proceedings of the Second Finnish Workshop on Genetic Algorithms and their Applications, volume Report Series 94-2, pages 23­34, Vaasa (Finland), 16.-18. March 1994. University of Vaasa, Department of Information Technology and Industrial Economics. (ftp://ftp.uwasa.fics/report94-2/Reeves1.ps.Z) ga94aReeves.
Bibliography
65
[245] B. C. H. Turton. Optimization of genetic algorithms using the Taguchi method. J. Syst. Eng. (UK), 4(3):121­130, ? 1994. * EEA 223/95 ga94aTurton. [246] Colin R. Reeves and Christine C. Wright. An experimental design perspective on genetic algorithms. In ?, editor, Proceedings of the Foundations of Genetic Algorithms 3 (FOGA 3), page ?, ?, ? 1994. ? Reeves ga94cReeves. [247] Colin R. Reeves and Christine C. Wright. Epistasis in genetic algorithms: An experimental design perspective. In Eshelman [1055], page ? prog ga95aReeves. [248] Y. Shen and M. M. Chen. Application of genetic algorithm for responce surface modeling in optimal statistical design. In Proceedings of the 1995 IEEE International Symposium on Circuits and Systems (ISCAS'95), volume 3, pages 2152­2155, Seattle, WA, April 30.- May 3. 1995. IEEE, New York. ga95aShen. [249] Jarmo T. Alander. On interval factorial genetic algorithm in global optimization. In Pearson et al. [1059], pages 388­391. ga95eAlander. [250] S. B. Crary and C. Spera. Optimal experimental design for combinatorial problems. Comput. Econ. (Netherlands), 9(3):241­255, 1996. (Proceedings of Quantitative Methods for Applied Sciences, Siena, Italy, June 1994) CCA77236/96 ga96bCrary. [251] P. G. Backhouse, A. F. Fotheringham, and G. Allan. A comparison of a genetic algorithm with an experimental design technique in the optimization of a production process. Journal of the Operational Research Society, 48(3):247­254, ? 1997. ga97aBackhouse. [252] Hidetoshi Tanaka. A comparative study of GA and orthogonal experimental design. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 143­146, Indianapolis, IN, 13.16. April 1997. IEEE, New York, NY. ga97aHidetoshiTanaka. [253] Kazuo Sugihara. A case study on tuning of genetic algorithms by using performance evaluation based on experimental design. Technical Report ICS-TR-97-01, University of Hawaii at Manoa, Department of Information and Computer Science, 1997. ResearchIndex ga97aKazuoSugihara http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.51.5412&rep=rep1&type=pdf. [254] Gerhard Venter and Raphael T. Haftka. Minimum-bias based experimental design for constructing response surfaces in structural optimization. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Adaptive Structures Forum, pages 1225­1238, Kissimmee, FL, 7.-10. April 1997. American Institute of Aeronautics and Astronautics. A97-24237 ga97aVenter. [255] Atte Moilanen. Optimization with evolutionary algorithms and local search. tech.lic. thesis, Helsinki University of Technology, Department of Engineering Physics and Mathematics, 1998. ga98aAMoilanen. [256] S. Garcia and E. P. Scott. Use of genetic algorithms in thermal property estimation. I. experimental design optimization. Numer. Heat Transfer A, Appl. (UK), 33(2):135­147, 1998. PA75430/98 ga98aSGarcia. [257] Thomas R. Kowar. Genetic function approximation experimental design (GFAXD): A new method for experimental design. Journal of Chemical Information and Computer Sciences, 38(5):858­866, ? 1998. * ChA 212176u/98 ga98aTRKowar. [258] Colin R. Reeves. Using genetic algorithms with small populations. In Forrest [1073], pages 92­99. ga:Reeves93e. [259] Brian Cogan. How scientists can optimise their work. Scientific Computing World, (55):29­32, October/November 2000. ga00aBrianCogan. [260] Salvatore Arnone, Massimo Dell'Orto, Andrea Tettamanzi, and Marco Tomassini. Highly parallel evolutionary algorithms for global optimization, symbolic inference and non-linear regression. In R. Gruber and Marco Tomassini, editors, Proceedings of the 6th Joint EPS-APS International Conference on Physics Computing, volume ?, page ?, Geneve, ? 1994. European Physical Society. Tettamanzi ga94aArnone. [261] F. Bickling, C. Fonteix, J.-P. Corriou, and I. Marc. Global optimization by artificial life: a new technique using genetic population evolution. RAIRO Rech. Oper. (France), 28(1):23­36, ? 1994. * CCA 38779/94 ga94aBicking. [262] William Eugene Hart. Adaptive global optimization with local search. PhD thesis, University of California, San Diego, 1994. * DAI Vol. 55 No. 7 ga94aHart. [263] JЁorg Kahlert. Global vector optimization by genetic algorithms. In Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing (EUFIT'94), volume 2, pages 607­608, Aachen (Germany), 20.-23. September 1994. ELITE-Foundation. ga94aKahlert.
66
Genetic algorithms in mathematics and statistics
[264] Frank Kurzawe. Optimization algorithms imitating nature. In ?, editor, Proceedings of the Third International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics, New Computing Techniques in Physics Research III, pages 213­228, Oberammergau (Germany), 4.-8. October 1993 1994. World Scientific, Singapore. EEA 79641/94 CCA 75493/94 ga94aKursawe. [265] David Shafer. Global optimization in optical design. Computers in Physics, 8(2):188­195, March/April 1994. ga94aShafer. [266] Ronald Shonkwiler and E. Van Vleck. Parallel speed-up of Monte Carlo methods for global optimization. Journal of Complexity, 10(1):64­95, March 1994. GA digest V. 9 N. 13 ga94aShonkwiler. [267] Allen Zeyher. Optical packages look for global minima. Computers in Physics, 8(2):137­140, March/April 1994. ga94aZeyher. [268] Sayeed Nurul Ghani. Performance of global optimisation algorithm EVOP for non-linear non-differentiable constrained objective functions. In ICEC'95 [1057], pages 320­325. prog. ga95aGhani. [269] S. Kwong, A. C. L. Ng, and K. F. Man. Improving local search in genetic algorithms for numerical global optimization using modified GRID-point search technique. In IEE/IEEE Sheffield '95 [1076], pages 419­423. conf.prog ga95aKwong. [270] Fred Glover. Probabilistic methods or global optimization in continuous variables. Final Report AFOSRTR-96-0351, Colorado University at Boulder, 1995. * GR 24-01 211 AD-A311 405/5GAR ga95bGlover. [271] Jo~ao Pedro Pedroso. Niche search: An evolutionary algorithm for global optimisation. In Voigt et al. [1061], pages 430­440. ga96aPedroso. [272] Pavel Popela and Jirґi Dvoraґk. Global optimization and genetic algorithms. In Osmera [1077], pages 205­214. ga96aPopela. [273] Jean-Michel Renders and Stґephane P. Flasse. Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 26(2):243­258, April 1996. ga96aRenders. [274] Yi Shang and Benjamin W. Wah. Global optimization for neural network training. Computer, 29(3):45­54, March 1996. ga96aShang. [275] H. Sugata, T. Hagino, and K. Shimizu. Global optimization method applying chaos in multi-trajectory inertial system. Transactions of the Institute of Electronics, Information, and Communication Engineers A (Japan), J79-A(10):1700­1707, 1996. In Japanese EEA113195/96 ga96aSugata. [276] M. Fukushima. Search for global maximum of a function of many variables using genetic algorithm. Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), J79D-II(6):1169­1171, 1996. (In Japanese) CCA 61071/96 ga96bFukushima. [277] Jo~ao Pedro Pedroso. Universal Service: Issues on Modelling and Regulation. PhD thesis, Universitґe Catholique de Louvain, 1996. [271] ga96bPedroso. [278] M. Zou and X. Zou. Global function optimization with the aid an auxiliary cost function. Chin. J. Electron. (China), 6(4):55­59, 1997. EEA23547/98 ga97aMZou. [279] E. Perrin, A. Mandrille, M. Oumoun, C. Fonteix, and I. Marc. Global optimization by evolutionary strategy: technique using the genetics of diploid individuals. Rech. Oper. (France), 31(2):161­201, 1997. In French EEA61809/97 ga97aPerrin. [280] S. Subha Rani, G. Gurusamy, and Nettem Ramu. Genetic algorithms for global optimization of constrained and unconstrained problems. In Osmera [1063], pages 129­134. ga97aRani. [281] Markus Schwehm. Globale optimierung mit massiv parallelen genetischen Algorithmen. PhD thesis, UniversitЁat Erlangen-NuЁrnberg, Institut fuЁr Matematische Maschinen und Datenverarbeitung (Informatik), 1997. (Arbeitsberichte des IMMD, Band 30, Nr. 1) ga97aSchwehm. [282] D. G. Sotiropoulos, E. C. Stavropoulos, and M. N. Vrahatis. A new hybrid genetic algorithm for global optimization. Nonlinear Analysis-Theory Methods & Applications, 30(7):4529­4538, 1997. P79132 ga97aSotiropoulos. [283] Piotr Wasiewicz, Jan J. Mulawka, and Brijesh Verma. Global optimisation and genetic methods. In Michael Blumenstein, editor, Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pages 30­36, Gold Coast, QUE, Australia, February 1997. Watson Ferguson & Company (Griffith University). ga97aWasiewicz.
Bibliography
67
[284] Xin Yao. Global optimisation by evolutionary algorithms. In Proceedings of the Second AIZU International Symposium on Parallel Algorithms/Architecture Synthesis, pages 282­291, Aizu-Wakamatsu, Japan, 17.21. March 1997. IEEE Computer Society Press, Los Alamitos, CA. CCA33980/97 ga97aXYao. [285] Vijay Hanagandi and Michael Nikolaou. A hybrid approach to global optimization using a clustering algorithm in a genetic search framework. Computer. Chem. Eng., 22(12):1913­1925, ? 1999. * ChA 83589a/99 ga98aHanagandi. [286] Kwong Sak Leung, T. Wong, and I. King. Probabilistic cooperative-competitive hierarchical modeling as a genetic operator in global optimization. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume ?, pages 3959­3964, ?, October 1998. IEEE. Leung lop ga98aKSLeung. [287] David J. Wales and Harold A. Scheraga. Global optimization of clusters, crystals, and biomolecules. Science, 285(5432):1368­1372, 27. August 1999. ga99aDJWales. [288] P. M. Ferreira Ricardo and Ricardo L. U. F. Pinto. A hybrid approach for global optimization. In Proceedings of the Third Metaheuristics International Conference, pages 201­205, Rio de Janeiro (Brazil), 19.-23. July 1999. Gatholic University of Rio de Janeiro, Brazil. ga99aFerreira. [289] In-Soo Song, Hyun-Wook Woo, and Min-Jea Tahk. A genetic algorithm with a Mendel operator for global minimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1521­1526, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77195/99 ga99aIn-SooSong. [290] Ko-Hsin Liang, Xin Yao, and C. Newton. Combining landscape approximation and local search in global optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1514­1520, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77194/99 ga99aKo-Liang. [291] Matthew F. Hobbs. Annealing and global optimization. In ?, editor, Proceedings of the 1992 ORSNZ Conference, pages 207­214, Christchurch, New Zealand, 24.-25. August 1992. ? Hobbs ga:Hobbs92a. [292] Gregor KjellstroЁm and L. Taxґen. Gaussian adaptation, an evolution-based global optimizer. In I. C. Brezinski and U. Kulish, editors, Computational and Applied Mathematics, pages 267­276. Elsevier, Amsterdam (The Netherlands), 1991. [626] ga:Kjellstrom91a. [293] J. Thomas Ngo. Global Optimization for Articulated Figures: Molecular Structure Prediction and Motion Synthesis for Animation. PhD thesis, Harvard University, Department of Biophysics, 1993. (http://www. interval.com/~\ngo/Pubs-wrld-byarea-960109.html) [1078] ga:Ngo93a. [294] Andrew D. J. Cross, Richard Myers, and Edwin R. Hancock. Convergence of a hill-climbing genetic algorithm for graph matching. Pattern Recognition, 33(11):1863­1880, November 2000. ga00aADJCross. [295] Erkki MЁakinen, Timo Poranen, and Petri Vuorenmaa. A genetic algorithm for determining the thickness of a graph. Series of Publications A-2000-5, University of Tampere, Department of Computer and Information Sciences, 2000. ga00aErkkiMakinen. [296] K. Minoshima, Kenjiro Komai, and T. Suezaki. Genetic algorithms for high-precision reconstructions of three-dimensional topographies using stereo fractographs. Fatigue and Fracture of Engineering Materials and Structures, 23(5):435­443, May 2000. * A01-24895 ga00aKMinoshima. [297] N. Homma, T. Aoki, and T. Higuchi. Evolutionary graph generation system with symbolic verification for arithmetic circuit design. Electronics Letters, 36(11):937­939, 25. May 2000. ga00aNHomma. [298] Topi Mikkola. Algorithm library for large scale vehicle routing. Master's thesis, Helsinki University of Technology, 2000. www /TKK ga00aTopiMikkola. [299] Xiaoyi Jiang, Andreas MuЁnger, and Horst Bunke. Synthesis of representative graphical symbols by computing generalized median graph. In A. K. Chhabra and D. Dori, editors, Graphics Recognition. Recent Advances, Third International Workshop, GREC'99, volume LNCS of 1941, pages 183­192, Jaipur (India), 26.-27. September 2000. Springer-Verlag Berlin Heidelberg. * www /Springer ga00aXJiang. [300] Peter G. Anderson. Ordered greed, II: graph coloring. In ?, editor, Proceedings of the ICSC/NAISO Conference, Information Science Innovations (ISI 2001), volume ?, page ?, Dubai (United Arab Emirates), March 2001. ? ga01aPGAnderson. [301] Richard Myers and Edwin R. Hancock. Least-commitment graph matching with genetic algorithms. Pattern Recognition, 34(2):375­394, February 2001. ga01aRichardMyers. [302] Xiaoyi Jiang, Andreas MuЁnger, and Horst Bunke. On median graphs: properties, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10):1144­1151, October 2001. ga01aXJiang.
68
Genetic algorithms in mathematics and statistics
[303] Y. Li. An effective implementation of a direct spanning tree representation in GAs. In Egbert J. W. Boers, Jens Gottlieb, Pier Luca Lanzi, Robert E. Smith, Stefano Cagnoni, Emma Hart, GuЁnther R. Raidl, and Harald Tijink, editors, Applications of Evolutionary Computing, EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume LNCS of 2037, pages 11­19, Como (Italy), 18.-20. April 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aYLi. [304] Mario KoЁppen, Bertram Nickolay, and Hendrik Treugut. Genetic algorithm based heuristic measure for pattern similarity in Kirlian photographs. In Egbert J. W. Boers, Jens Gottlieb, Pier Luca Lanzi, Robert E. Smith, Stefano Cagnoni, Emma Hart, GuЁnther R. Raidl, and Harald Tijink, editors, Applications of Evolutionary Computing, EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, volume LNCS of 2037, pages 317­324, Como (Italy), 18.-20. April 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01bMKoppen. [305] Adriana Apetrei, Ovidiu Gheorghies, and Rolf Drechsler. An evolutionary approach to graph partitioning. pages 129­134, 2002. ga02aAApetrei. [306] Burcin Bozkaya, Kianjung Zhang, and Erhan Erkut. An efficient genetic algorithm for the p-median problem. In Zvi Drezner, Fullerto X, and Horst W. Hamacher, editors, Facility Location: Applications and Theory, page ? Springer-Verlag, Berlin, 2002. opt-net ga02aBBozkaya. [307] Satoshi Murata, Kohji Tomita, and Haruhisa Kurokawa. System generation by graph automata. pages 47­52, 2002. ga02aSatoshiMurata. [308] Marc Ebner. Evolutionary design of objects using scene graphs. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 47­58, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aMarcEbner. [309] Sohail S. Chaudhry, Shiwei He, and Peggy E. Chaudhry. Solving a class of facility location problems using genetic algorithms. Expert Systems, 20(2):86­91, May 2003. ga03aSSChaudhry. [310] Timo Poranen. Approximation Algorithms for Some Topological Invariants of Graphs. PhD thesis, University of Tampere, Department of Computer Science, 2004. ga04aTimoPoranen. [311] Bob Carter and Kihong Park. Scalability problems of genetic search. In Proceedings of the 1994 IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages 1591­1596, San Antonio, TX, 2.-5. October 1994. IEEE, New York. ga94aCarter. [312] Henrik Esbensen. Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm. Report DAIMI PB-468, Aarhus University, Computer Science Department, 1994. ga94aEsbensen. [313] Erkki MaЁkinen and Mika Sieranta. Genetic algorithms for drawing bipartite graphs. Technical Report A-1994-1, University of Tampere, Department of Computer Science, 1994. ga94aMakinen. [314] B. Manderick and H. Inayoshi. The weighted graph bi-partitioning problem: An analysis of ga performance. In Davidor et al. [1050], page ? conf. prog. ga94aManderick. [315] Salvatore R. Mangano. Algorithms for directed graphs ­ a unique approach using genetic algorithms. Dr. Dobb's Journal, 19(4):92,94­97,106­107,147, April 1994. ga94aMangano. [316] Byung-Ro Moon. Hybrid genetic algorithms with hyperplane synthesis: A theoretical and empirical study. PhD thesis, The Pennsylvania State University, 1994. * DAI Vol 56 No 2 ga94aMoon. [317] Hasan Pirkul and Erik Rolland. New heuristic solution procedures for the uniform graph partitioning problem: extensions and evaluation. Computers & Operations Research, 21(8):895­907, October 1994. ga94aPirkul. [318] Joos Vandewalle, Kuo-Chin Fan, and Jorng-Tzong Horng. A genetic-based search approach to errorcorrecting graph isomorphism problems. In Proceedings of the third International Workshop on Rough Sets and Soft Computing, pages 286­293, San Jose, CA, 10.-12. November 1994. RSSC'94. CCA 44083/95 ga94aVandewalle. [319] M. Yamada, T. Sugiyama, H. Seki, and H. Itoh. A string diagram processing based on a genetic algorithm ­ a cat's cradle diagram generating method. Transactions of the Information Processing Society of Japan, 35(10):2059­2068, October 1994. (in Japanese) * CCA 14878/95 ga94aYamada. [320] H. Chan and P. Mazumder. A systolic architecture for high speed hypergraph partitioning using a genetic algorithm. In ?, editor, Proceedings of the Progress in Evolutionary Computation, pages 109­126, NSW, Australia, 16. November 1993 & 21.-22. November 1994 1994. Springer-Verlag, Berlin (Germany). * CCA81971/94 ga94bChan.
Bibliography
69
[321] Henrik Esbensen and Pinaki Mazumder. Genetic algorithm for Steiner problem in a graph. In Proceedings of the European Design and Test Conference, pages 402­406, Paris, February 28.-March 3. 1994. IEEE Computer Society Press, Los Alamitos, CA. EI M141889/94 ga94bEsbensen. [322] Simon G. Handley. On the use of a directed acyclic graph to represent a population of computer programs. In ICEC'94 [1051], pages 154­159. ga94bHandley. [323] Thang Nguyen Bui and Byung Ro Moon. Fast and stable hybrid genetic algorithm for the ratio-cut partitioning problem on hypergraphs. In Proceedings of the 31st Design Automation Conference, pages 664­669, San Diego, CA, 6.-10. June 1994. IEEE, Piscataway, NJ. * EI M000420/95 ga94bNguyen. [324] Toshiyuki Masui. Evolutionary learning of graph layout constraints from examples. In Proceedings of the Seventh Annual Symposium on User Interface Software and Technology, pages 103­108, Marina del Rey, CA, USA, 2.-4. November 1994. ACM, New York, NY. * CCA58146/96 ga94bToshiyukiMasui. [325] Bernd Becker and Rolf Drechsler. Efficient graph based representation of multi-valued functions with an application to genetic algorithms. In Proceedings of the Twenty-Fourth International Symposium on Multiple-Valued Logic, pages 65­72, Boston, MA, 25.-27. May 1994. IEEE Computer Society Press, Los Alamitos , CA. CCA55537/94 ga94cBecker. [326] Harpal Singh Maini. Incorporation of knowledge in genetic recombination. PhD thesis, Syracuse University, 1994. * DAI Vol 56 No 3 ga94dMaini. [327] Chistina Bazgan and Henri Luchian. A genetic algorithm for the maximum clique problem. In Pearson et al. [1059], pages 499­502. ga95aBazgan. [328] Henrik Esbensen. Finding (near-)optimal Steiner trees in large graphs. In Eshelman [1055], page ? prog ga95aEsbensen. [329] H. Chan and Pinaki Mazumder. A systolic architecture for high speed hypergraph partitioning using genetic algorithms. In Yao [1079], pages 109­126. [1054] Yao /conf. prog. ga95aHChan. [330] Christian HoЁhn and Colin R. Reeves. Embedding neighbourhood search operators in a genetic algorithm for graph bipartitioning. Ctac technical report, Coventry University, UK, 1995. Reeves ga95aHohn. [331] P. Kadluczka and K. Wala. Tabu search and genetic algorithms for the generalized graph partitioning problem. Control Cybern. (Poland), 24(4):459­476, ? 1995. * EEA 38788/96 ga95aKadluczka. [332] Matthias Mayer. Parallel genetic algorithm for the DAG vertex splitting problem. In Osmera [1080], pages 87­92. ga95aMayer. [333] P. Piggott and F. Suraweera. Encoding graphs for genetic algorithms: an investigation using the minimum spanning tree problem. In Yao [1079], pages 305­. Yao /conf. prog. ga95aPiggott. [334] Milos Seda. Finding the shortest Hamiltonian cycle in a complete graph using genetic algorithm. In Osmera [1080], pages 145­147. ga95aSeda. [335] Thang Nguyen Bui and Paul H. Eppley. A hybrid genetic algorithm for the maximum clique problem. In Eshelman [1055], page ? prog ga95bBui. [336] Cheng-Wen Liu, Kuo-Chin Fan, Jorng-Tzong Horng, and Yuan-Kai Wang. Solving weighted graph matching problem by modified microgenetic algorithm. In Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybrenetics, volume 1, pages 638­643, Vancouver, BC (Canada), 22.-25. October 1995. IEEE, Piscataway, NJ. EI M035877/95 ga95bC-WLiu. [337] T. Cassen, K. R. Subramanian, and Zbigniew Michalewicz. Near-optimal construction of partitioning trees by evolutionary techniques. In Proceedings of the Graphics Interface `95, pages 263­271, Quebec, Que., Canada, 17.-19. May 1995. Canadian Information Processing Society, Toronto. CCA77629/95 ga95bCassen. [338] Henrik Esbensen. Computing near-optimal solutions to the steiner problem in a graph using a genetic algorithm. Networks, 26(4):173­185, December 1995. ga95bEsbensen. [339] Kihong Park and Bob Carter. On the effectiveness of genetic search in combinatorial optimization. In K. M. George, Janice H. Carroll, Ed Deaton, Dave Oppenheim, and Jim Hightower, editors, Proceedings of the 10th ACM Symposium on Applied Computing, pages 329­336, Nashville, TN, ? 1995. ACM Press. ga95bKPark. [340] A. O. Rodriguez and A. R. Suarez. Automatic graph drawing by genetic search. In ?, editor, Proceedings of the 11th ISPE/IFAC International Conference on CAD/CAM, Robotics and Factories of the Future CARS and FOF95, volume 2, pages 982­987, Pereira, Colombia, 28.-30. August 1995. Univ. Tecnologica de Pereira, Pereira (Colombia). CCA30725/96 ga95bRodriguez.
70
Genetic algorithms in mathematics and statistics
[341] Taehoon Park and Chae Y. Lee. Algorithms for partitioning a graph. Computers & Industrial Engineering, 28(4):899­909, 1995. EI M035866/95 ga95bTPark. [342] Yuan-Kai Wang, Kuo-Chin Fan, Cheng-Wen Liu, and Jorng-Tzong Horng. Adaptive optimization for solving a class of subgraph isomorphism problems. In ICEC'95 [1057], pages 44­49. prog. ga95bWang. [343] Imtiaz Ahmad, Muhammad K. Dhodhi, and Kassam A. Saleh. An evolutionary technique for local microcode compaction. Microprocessors and Microsystems, 19(8):467­474, October 1995. * ga95fAhmad. [344] Andrew D. J. Cross and Edwin R. Hancock. Inexact graph matching with genetic search. In ?, editor, Proceedings of the 6th International Workshop, Advances in Structural and Syntactical Pattern Recognition, volume ?, pages 150­159, Leipzig, Germany, 20.-23. August 1996. Springer-Verlag, Berlin (Germany). CCA9775/97 ga96aADJCross. [345] K. S. Al-Sultan, M. F. Hussain, and J. S. Nizami. A genetic algorithm for the set covering problem. Journal of the Operational Research Society, 47(5):702­709, May 1996. ga96aAl-Sultan. [346] Jesus Silva Castro. Electrocardiographic signal analysis using genetic algorithms (GAs). In Proceedings of the 1996 23rd Annual Meeting on Computers in Cardiology, pages 445­448, Indianapolis, IN, 8.11. September 1996. IEEE Computer Society Press, Los Alamitos, CA. * EEA 49615/97 EI M034806/97 ga96aCastro. [347] Herman Ehrenburg. Improved direct acyclic graph handling and the combine operator in genetic programming. In Koza et al. [1060], page ? conf.prog ga96aEhrenburg. [348] Timo Eloranta. Geneettisten algoritmien soveltaminen suuntaamattomien verkkojen piirtoon [Applying genetic algorithms to drawing undirected graphs]. Report Series B B-1996-1, University of Tampere, Department of Computer Science, 1996. (in Finnish, also as [354]) ga96aEloranta. [349] M. Livesay, P. Nikolopoulos, and C. Nikolopoulos. Solving the minimal node cover problem using genetic algorithms. In Proceedings of the IASTED/ISMM International Conference, pages 176­180, Washington D.C., 5.-7. June 1996. IASTED, Anaheim, CA (USA). CCA44675/97 ga96aLivesay. [350] Maruja F. Ortega, E. Arraiz, and A. Suarez. A genetic algorithm for drawing graphs in an interactive environment. In Proceedings of the XVI International Conference of the Chilean Computer Science Society, pages 112­119, Valdivia, Chile, 13.-15. November 1996. Soc. Chilena de Ciencia de la Computacion, Santiago, Chile. CCA 40178/97 ga96aOrtega. [351] Alejandro Pazos, Julian Dorado, and Antonino Santos. Detection of patterns in radiographs using ANN designed and trained with the genetic algorithm. In Koza et al. [1060], page ? conf.prog ga96aPazos. [352] Frank Schweitzer, Werner Ebeling, Helge Rosґe, and O. Weiss. Network optimization using evolutionary strategies. In Voigt et al. [1061], pages 940­949. ga96aSchweitzer. [353] Milos Seda. Solving the minimum spanning tree problem using genetic encoding scheme. In Osmera [1077], pages 155­159. ga96aSeda. [354] Timo Eloranta. Geneettisten algoritmien soveltaminen suuntaamattomien verkkojen piirtoon [Applying genetic algorithms to drawing undirected graphs]. Master's thesis, University of Tampere, Department of Computer Science, 1996. (in Finnish, also as [348]) ga96bEloranta. [355] Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of Operations Research, 63(?):437­461, 1996. * CCA69200/96 ga96bFleurent. [356] D. Gusfield, R. Karp, Lusheng Wang, and P. Stelling. Graph traversals, genes, and matroids: an efficient case of the travelling salesman problem. In Proceedings of the 7th Annual Symposium, Combinatorial Pattern Matching, pages 304­319, Laguna Beach, CA, USA, 10.-12. June 1996. Springer-Verlag, Berlin (Germany). CCA 84150/96 ga96bGusfield. [357] Thomas Haynes and Dale A. Schoenefeld. Clique detection via genetic programming. In Koza et al. [1060], page ? conf.prog ga96bHaynes. [358] Robert Morris and Behrouz Nowrouzian. Novel technique for pipelined scheduling and allocation of dataflow graphs based on genetic algorithms. In Proceedings of the 1996 Canadian Conference on Electrical and Computer Engineering, volume 1, pages 429­432, Calgary, Canada, 26.-29. May 1996. IEEE, Piscataway, NJ. * EI M159151/96 ga96bMorris. [359] Terence Soule, James A. Foster, and John Dickinson. Using genetic programming to approximate maximum clique. In Koza et al. [1060], page ? conf.prog ga96bSoule. [360] Thang Nguyen Bui and Byung-Ro Moon. Genetic algorithm and graph partitioning. IEEE Transactions on Computers, 45(7):841­855, July 1996. ga96bTNBui.
Bibliography
71
[361] Timo Eloranta and Erkki MЁakinen. TimGA - a genetic algorithm for drawing undirected graphs. Report Series A-1996-10, University of Tampere, Department of Computer Science, 1996. ga96cEloranta. [362] Charu C. Aggarwal, James B. Orlin, and Ray P. Tai. Optimized crossover for the independent set problem. Operations Research, 45(2):226­234, March-April 1997. ga97aAggarwal. [363] Evolutionary approach to the maximum clique problem. In Immanuel M. Bomze, M. Pelillo, and R. Giacomini, editors, Developments in Global Optimization (Seelcted Papers of the Third Workshop on Global Optimization), pages 95­108, Szeged (Hungary), 10.-14. December 1995 1997. Kluwer Academic Publishers. opt-net ga97aBomze. [364] JuЁrgen Branke, Frank Bucher, and Hartmut Schmeck. A genetic algorithm for drawing undirected graphs. In Alander [1072], pages 193­206. (ftp://ftp.uwasa.fics/3NWGA/Branke.ps.Z) ga97aBranke. [365] D. Costa and A. Hertz. Ants can colour graphs. J. Oper. Res. Soc., 48(3):295­305, March 1997. * CCA 34990/97 ga97aDCosta. [366] Aґ goston E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary graph coloring. In ? [1062], pages 95­108. prog ga97aEiben. [367] G. Zhou and Mitsuo Gen. A note on genetic algorithms for degree-constrained spanning tree problems. Networks (USA), 30(2):91­95, 1997. CCA89427/97 ga97aGZhou. [368] M. Hifi. A genetic algorithm-based heuristic for solving the weighted maximum independent set and some equivalent problems. Journal of the Operational Research Society, 48(6):612­622, June 1997. ga97aHifi. [369] K. Sumi, H. Ebara, H. Nakano, and H. Maeda. Automatically graph drawing using genetic algorithm. Transactions of the Insttute of Electronics, Information, and Communication Engineers A (Japan), J80A(1):187­194, 1997. In Japanese CCA23155/97 ga97aKSumi. [370] K. I. Kumskov, A. A. Chernobaev, and D. F. Mityushev. The generation of labeled molecular graphs using metrics and evolutionary programming. Pattern Recognit. Image Anal. (Russia), 7(1):76­81, 1997. CCA42020/97 ga97aKumskov. [371] Vladimґir Kvasnicka and Jirґi Pospґichal. Simple implementation of genetic programming by column tables. In Osmera [1063], pages 71­76. ga97aKvasnicka. [372] S. Voss and K. Gutenschwager. A chunking based genetic algorithm for the Steiner tree problem in graphs. In Proceedings of the Network Design: Connectivity and Facilities Location, pages 335­355, Rutgers, NJ (USA), 28.-30. April 1997. American Math. Soc., Providence, RI (USA). CCA34025/98 ga97aSVoss. [373] Akio Sakamoto, Xinghao Liu, and Takashi Shimamoto. A genetic approach for maximum independent set problems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, E80-A(3):551­556, March 1997. ga97aSakamoto. [374] Montek Singh, Amitabha Chatterjee, and Santanu Chaudhury. Matching structural shape descriptions using genetic algorithms. Pattern Recognition, 30(9):1451­1462, September 1997. ga97aSingh. [375] Masanori Arita Akira Suyama and Masami Hagiya. A heuristic approach for Hamiltonian path problem with molecules. In Koza et al. [1081], page ? conf.prog ga97aSuyama. [376] Yuan-Kai Wang, Kuo-Chin Fan, and Jorng-Tzong Horng. Genetic-based search for error-correcting graph isomorphism. IEEE Transactions on Systems, Man, and Cybernetics B, Cybernetics, 27(4):588­597, 1997. CCA70934/97 ga97aYuan-KaiWang. [377] Aґ goston E. Eiben, Van Der Hauw, and Van Hemert. Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics, 4(?):25­46, ? 1998. GA digest v. 12 n. 8 /Falkenauer ga98aAEiben. [378] A. Rosete and A. Ochoa. Genetic graph drawing. In Proceedings of the Thirteeth International Conference on Applications of Artificial Intelligence in Engineering, pages 37­40, Galway (Ireland), 7.-9. July 1998. Computational Mechanics Publications, Ltd., Southhampton, UK. CCA66851/99 ga98aARosete. [379] P. Guitart and J. M. Basart. A genetic algorithm approach for the Steiner problem in graphs. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 508­512, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). CCA68134/99 ga98aGuitart. [380] Jo~ao Carlos Furtado. Algoritmo genґetico construtivo na otimizaёca~o de problemas combinatoriais de agrupamentos. PhD thesis, Instituto Nacional de Pesquisas Espaciais, 1998. (in Purtuguese) ga98aJCFurtado. [381] J. Marconi and James A. Foster. A hard problem for genetic algorithms: finding cliques in Keller graphs. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 650­655, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. CCA74549/98 ga98aJMarconi.
72
Genetic algorithms in mathematics and statistics
[382] Sujoy Sen, Shankar Narasimhan, and Kalyanmoy Deb. Sensor network design of linear processes using genetic algorithms. Computers in Chemical Engineering, 22(3):385­390, ? 1998. * ChA 69195s/98 ga98aSujoySen. [383] William Edelson and Michael L. Gargano. Minimal edge-ordered spanning trees solved by a genetic algorithm with feasible search space. In ?, editor, Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume Gongr. Numer. 135, pages 37­45, Boca Raton, FL, ? 1998. ? www /MathRev99j:05175 ga98aWEdelson. [384] Octav Brudaru and Adrian Vilcu. Genetic algorithm for a transportation problem with variable charge along Hamiltonian circuits. In B. Katalinic, editor, Proceedings of the 10th International DAAAM Symposium: Intelligent Manufacturing & Automation: Past - Present - Future, pages 63­64, Vienna (Austria), 21.-23. October 1999. DAAAM International Vienna. ga99aBrudaru. [385] I. A. Wagner and A. M. Bruckstein. Hamiltonian(t) - an ant-inspired heuristic for recognizing Hamiltonian graphs. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1465­ 1469, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77375/99 ga99aIAWagner. [386] J. R. Kim, Mitsuo Gen, and K. Ida. Bicriteria network design using a spanning tree-based genetic algorithm. Artif. Life Robot. (Japan), 3(2):65­72, 1999. CCA98835/99 ga99aJRKim. [387] K. Tagawa, K. Kanesige, K. Inoue, and H. Haneda. Distance based hybrid genetic algorithm: an application for the graph coloring problem. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2325­2332, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77265/99 ga99aKTagawa. [388] Pascale Kuntz and Dominique Snyers. New results on an ant-based heuristic for highlighting the organization of large graphs. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1451­1458, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77373/99 ga99aPKuntz. [389] B. Sawionek, J. Wojciechowski, and J. Arabas. Designing regular graphs with the use of evolutionary algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1832­1839, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77065/99 ga99aSawionek. [390] Wen-Sheng Cai, Xue-Guang Shao, and Zhong-Xiao Pan. Study of chemical subgraph isomorphism using genetic algorithms. Gaodeng Xuexiao Huaxue Xuebao, 20(1):32­36, ? 1999. (in Chinese) ChA 281528t/99 ga99aWen-ShengCai. [391] R. Chandrasekharam, S. Subramanian, and S. Chaudhury. Genetic algorithm for node partitioning problem and applications in VLSI design. IEE Proceedings E: Comput. Digit. Tech., 140(5):255­260, September 1993. ga:Chaudhury93a. [392] L. J. M. Cluitmans. Using genetic algorithms for scheduling data flow graphs. Technical Report EUT Report 92-E-266, Eindhoven University of Technology, 1992. * EEA 14194/93 [1082] ga:Cluitmans92. [393] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios. Application of genetic algorithms to software testing [Application des algorithmes gґenґetiques au test des logiciels]. In Proceedings of the 5th International Conference on Software Engineering, pages 625­636, Toulouse, France, 7.-11. December 1992. (translated from French by Charlie Ellis) ga:Ellis92. [394] A. Kapsalis, Vic J. Rayward-Smith, and George D. Smith. Solving the graphical Steiner tree problem using genetic algorithms. Journal of the Operational Research Society, 44(4):397­406, April 1993. * IAOR 53489/93 ga:GDSmith93c. [395] B. H. Gwee, M. H. Lim, and J. S. Ho. Solving four-colouring map problem using genetic algorithm. In ?, editor, Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pages 332­333, Dunedin (New Zealand), 24.-26. November 1993. IEEE Computer Society Press, Los Alamitos, CA. * CCA 45399/94 ga:Gwee93a. [396] Bob Carter and Kihong Park. How good are genetic algorithms at finding large cliques: an experimental study. Report BU-CS-93-015, Boston University, Computer Science Department, 1993. ga:KPark93b. [397] Gregor von Laszewski. Ein parallel genetischer Algorithmus fuЁr das Graph-Partitionierungsproblem. PhD thesis, University of Bonn, 1990. Back/bib/unp ga:LaszewskiThesis. [398] Tsutomu Maruyama. Parallel graph partitioning algorithm using a genetic algorithm. JSPP, ?(?):71­78, 1992. (in Japanese) Konagaya92b ga:Maruyama92a. [399] Matthias Mayer and Fikret Ercal. Genetic algorithms for vertex splitting in DAGs. In Forrest [1073], page 646. ga:Mayer93a.
Bibliography
73
[400] Matthias Mayer. Parallel genetic algorithm for the DAG vertex splitting problem. Master's thesis, University of Missouri - Rolla, 1993. Mayer/GA5 ga:MayerMSThesis. [401] Gregor von Laszewski and Heinz MuЁhlenbein. Partitioning a graph with a parallel genetic algorithm. In Schwefel and MaЁnner [1075], pages 165­169. ga:Muhlenbein90a. [402] Tony NordstroЁm. Using genetic optimization for mapping data flow graphs onto a regular processor array. Technical Report L. 152, Chalmers Tekniska HoЁgskola, Sekt. foЁr elektro- och datorteknik, 1993. Gopher/Chalmers ga:Nordstrom93a. [403] Lin-Ming Jin and Shu-Park Chan. A new and efficient partitioning algorithm - genetic partitioning. In S. Michael, editor, Proceedings of the 34th Midwest Symposium on Circuits and Systems, volume 2, pages 712­715, Monterey, CA, 14.-17. May 1992. IEEE, New York. * P55661 CCA 31170/93 EEA 34052/93 ga:SPChan92b. [404] C. Schiemangk. Anwendung einer Evolutionsstrategie zum Affinden eines optimalen Subgraphen. In Zingert, editor, Numerische Realisierung Matematischer Modelle, page ? Zentralinstitut fuЁr Kybernetik und Informationsprozesse, AdW, ?, 1981. BackBib ga:Schiemangk81a. [405] Tuomas Sandholm. 1-D fraktaalin inverssi [1-D fractal inverse and GA]. In Alander [1083], pages 126­132. (in Finnish) GA:Sandholm92. [406] Rachid Chelouah, Patrick Siarry, G. Berthiau, and B. De Barmon. An optimization method fitted for model inversion in non destructive control by eddy currents. The European Physical Journal, Applied Physics, 12(3):231­238, December 2000. (Proceedings of the NUMELEC 2000) ga00aChelouah. [407] Josґe M. Gutiґerrez, A. S. Cofin~o, and Marґia L. Ivanissevich. An hybrid evolutive-genetic strategy for the inverse fractal problem of IFS models. In Maria Carolina Monard and Jaime Sima~o Sichman, editors, Advances in Artificial Intelligence, International Joint Conference, 7th Ibero-American Conference on AI, 15th Brazilian Symposium on AI, IBERAMIA-SBIA 2000, volume LNCS of 1952, pages 467­476, Atibaia, SP (Brazil), November 2000. Springer-Verlag Berlin Heidelberg. * www /Springer ga00aJMGutierrez. [408] Raffaele Albanese, Guglielmo Rubinacci, Antonello Tamburrino, and Fabio Villone. Phenomenological approaches based on an integral formulation for forward and inverse problems in eddy current testing. International Journal of Applied Electromagnetics and Mechanics, 12(3-4):115­137, ? 2000. * http://iospress.metapress.com ga00aRAlbanese. [409] Sabbir U. Ahmad, A. Rahim Leyman, Lim Chong Jen, and Er Meng Hwa. A hybrid optimization approach for the inverse problem of radiotherapy. In ?, editor, Proceedings of the 22nd Annual EMBS International Conference, volume ?, pages 3096­3099, Chicago, IL, 23.-28. July 2000. IEEE, Piscataway, NJ. ga00aSUAhmad. [410] S. W. McIntosh, Paul Charbonneau, and J. C. Brown. Preconditioning the differential emission measure (Te) inverse problem. The Astrophysical Journal, 529(2):1115­1130, February 2000. NASA ADS ga00aSWMcIntosh. [411] Salvatore Caorsi and Matteo Pastorino. Two-dimensional microwave imaging approach based on a genetic algorithm. IEEE Transactions on Antennas and Propagation, 48(3):370­373, March 2000. ga00bSCaorsi. [412] Chunyan Li Guanghua and Ouyang Guotai Jiang. An optimization algorithm for hurtless location of epilepsy foci. In Proceedings of the 23rd Annual EMBS International Conference, page 938, Istanbul (Turkey), 25.-28. October 2001. IEEE, Piscataway, NJ. ga01aCLGuanghua. [413] D. K. Karpouzos, F. Delay, K. L. Katsifarakis, and G. de Marsily. A multipopulation genetic algorithm to solve the inverse problem in hydrogeology. Water Resources Research, 37(9):2291­2302, September 2001. NASA ADS ga01aDKKarpouzos. [414] F. A. Neves, S. C. Singh, and Keith Priestley. Velocity structure of the upper mantle discontinuities beneath North America from waveform inversion of broadband seismic data using a genetic algorithm. Journal of Geophysical Research, 106(B10):21883­21896, October 2001. NASA ADS ga01aFANeves. [415] F. Kojima and N. Kubota. Electromagnetic inverse analysis using coevolutionary algorithm and its application to crack profiles identification. In Matousek Radek and Osmera Pavel, editors, 7th International Conference on Soft Computing, Mendel 2001, pages 75­80, Brno, Czech Republic, 6.- 8.June 2001. Brno University of Technology. ga01aFKojima. [416] Guillaume Ramillien. Genetic algorithms for geophysical parameter inversion from altimeter data. Geophysical Journal International, 147(2):393­402, November 2001. NASA ADS ga01aGRamillien. [417] Jamshid Ghaboussi. Biologically inspired soft computing methods in structural mechanics and engineering. Structural Engineering and Mechanics, 11(5):485­502, May 2001. * A01-32997 ga01aJGhaboussi.
74
Genetic algorithms in mathematics and statistics
[418] J. P. Erickson, K. D. Koper, and G. Zandt. Anisotropic crustal structure inversion using a niching genetic algorithm. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. NASA ADS ga01aJPErickson. [419] K. M. Zhao and J. K. Lee. Generation of cyclic stress-strain curves for sheet metals. Journal of Engineering Materials and Technology, 123(4):391­397, October 2001. www /ASME ga01aKMZhao. [420] Mikko Kaasalainen. Interpretation of lightcurves of precessing asteroids. Astronomy & Astrophysics, 376(?):302­309, ? 2001. ga01aMikkoKaasalainen. [421] R. Zhou abd B. W. Stump. Upper crustal shear structure of NE Wyoming inverted by regional surface waves from mining explosions-comparison of niching genetic algorithms and least-squares inversion. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.14. December 2001. American Geophysical Union. NASA ADS ga01aRZhou. [422] Z. Peng, Y. Ben-Zion, and A. J. Michael. Quantitative inversion of seismic fault zone waveforms in the rupture zone of the 1992 landers earthquake for structural properties at depth. In ?, editor, American Geophysical Union, Fall Meeting 2001, volume ?, page ?, San Francisco, CA, 10.-14. December 2001. American Geophysical Union. NASA ADS ga01aZPeng. [423] Guillaume Dutilleux, Franck C. Sgard, and Ulf R. Kristiansen. Low-frequency assessment of the in situ acoustic absorption of materials in rooms: an inverse problem approach using evolutionary optimization. International Journal for Numerical Methods in Engineering, 53(9):2143­2161, 30. March 2002. ga02aGDutilleux. [424] M.-G. Her, C.-Y. Chen, Y.-C. Hung, and M. Karkoub. Approximating a robot inverse kinematics solution using fuzzy logic by genetic algorithms. The International Journal of Advanced Manufacturing Technology, 20(5):375­380, 2002. ga02aM-GHer. [425] M. Farina, A. Bramanti, and P. Di Barba. Combining global and local search of nondominated solutions in inverse electromagnetism. pages 196­201, 2002. ga02aMFarina. [426] Y. Frayman, B. F. Rolfe, and G. I. Webb. Improving on inverse model of sheet metal forming by neural network based regression. In ?, editor, Proceedings of DECTC2002, The 2002 ASME Computers and Information in Engineering Conference, pages 1­8, ?, ? 2002. ASME Press. ga02aYFrayman. [427] Frank T.-C. Tsai, Ne-Zheng Sun, and William W.-G. Yeh. A combinatorial optimization scheme for parameter structure identification in ground water modeling. Ground Water, 41(2):156­169, March-April 2003. ga03aFrankTsai. [428] Rodrick Kimball Draney. Two-dimensional time-domain inversion of perfect conductors using the genetic algorithm. PhD thesis, Utah State University, 2003. * www /UMI ga03aRKDraney. [429] Darrell Whitley, Monte Lunacek, and James Knight. Ruffled by ridges: How evolutionary algorithms can fail. In Kalyanmoy Deb et al, editor, Genetic and Evolutionary Computation - GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 294­306, Seattle, WA, 26.-30. June 2004. Springer-Verlag, Berlin. ga04aDWhitley. [430] PЁaivi Koivisto and Johan Sten. Genetic algorithm applied to determine the spherical wave expansion from amplitude-only far-field data. Microwave and Optical technology Letters, 46(4):402­406, ? 2005. www /VTT ga05aPaiviKoivisto. [431] Bo Ye, Guangxin Zhang, Pingjie Huang, Mengbao Fan, Song Zheng, and Zekui Zhou. Quantifying geometry parameters of defect in multilayered structures from eddy current nondestructive evaluation signals by using genetic algorithm. In Proceedings of the 6th World Congress on Intelligent Control and Automation, volume 2, pages 5358­5362, Dalian (China), 21.-23. June 2006. IEEE, Piscataway, NJ. ga06aBoYe. [432] Manuel Benedetti, Massimo Donelli, Anna Martini, Matteo Pastorino, Andrea Rosani, and Andrea Massa. An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection. IEEE Transactions on Instrumentation and Measurement, 55(6):1878­1884, December 2006. ga06aMBenedetti. [433] Maria E. Requena-Pґerez, Antonio Albero-Ortiz, Juan Monzoґ-Cabrera, and Alejandro Dґiaz-Morcillo. Combined use of genetic algorithms and gradient descent optimization methods for accurate inverse permittivity measurement. IEEE Transactions on Microwave Theory and Techniques, 54(2):615­624, February 2006. ga06aMERequena-Perez. [434] Mingfeng Jiang, Ling Xia, and Guofa Shou. The use of genetic algorithms for solving the inverse problem of electrocardiography. In Proceedings of the 28th IEEE EMBS Annual International Conference, pages 3907­3910, New York City, 30. August- 3. September 2006. IEEE, Piscataway, NJ. ga06aMingfengJiang.
Bibliography
75
[435] Vanessa P. Rolnik and Paulo Seleghim. A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. Journal of the Brazilian Society of Mechanical Science and Engineering, XXVIII(4):378­389, October-December 2006. ga06aVPRolnik. [436] A. Andrade-Campos, S. Thuillier, P. Pilvin, and F. Teixeira-Dias. On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models. International Journal of Plasticity, 23(8):1349­1379, ? 2007. ga07aAAndrade-Campos. [437] Ahmet T. Basokur, Irfan Akca, and Nedal W. A. Siyam. Hybrid genetic algorithms in view of the evolution theories with application for the electrical sounding method. Geophysical Prospecting, 55(3):393­406, May 2007. * ISI ga07aATBasokur. [438] Bishweswar Sahoo and Damodar Maity. Damage assessment of structures using hybrid neuro-genetic algorithm. Applied Soft Computing, 7(1):89­104, January 2007. * www /google ga07aBSahoo. [439] K.C. Hari, M. Nabi, and S. V. Kulkarni. Improved FEM model for defect-shape construction from MFL signal by using genetic algorithm. Science, Measurement & Technology, IET, 1(4):196­200, July 2007. ga07aKCHari. [440] Fung-Bao Liu. A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source. International Journal of Heat and Mass Transfer, 51(15-16):3745­3752, 15. July 2008. ga08aFung-BaoLiu08a. [441] W. Li, H. Wang, and Z. Qian. [optimization approach to inverse problems in near-infrared optical tomography]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 25(2):264­269, April 2008. (in Chinese) PubMed ga08aWLi. [442] Grazieli L. C. Carosio. Algoritmos Geneticos Paralelos para a Solucao de Problemas Inversos em Tomografoia por Impedancia Eletrica. PhD thesis, Universidade de Sa~o Paulo, 2008. www /lop Carosio ga08bGLCCarosio. [443] Pierre Collet and Jean Louchet. Ch. 2, artificial evolution and the Parisian approach, applications in the processing of signals and images. In Patrick Siarry, editor, Optimiation in Signal and Image Processing, pages 15­43. Wiley, Hoboken, NJ, 2009. ga09aPierreCollet. [444] Mirtha Irizar Mesa, Orestes Llanes-Santiago, Francisco Herrera Fernandez, David Curbelo Rodriguez, Antonio Jose Da Silva Neto, and Leoncio Diogenes T. Camara. An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model. Soft Computing, 15(5):963­973, May 2011. * ISI ga11aMIMesa . [445] Ahmad Fadzil M. Hani, Hermawan Nugroho, Norashikin Shamsudin, and Roshidad Baba. Melanin determination using optimised inverse Monte Carlo for skin-light interaction. In Proceedings of the 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), pages 314­318, ?, ? 2012. IEEE, Piscataway, NJ. ga12aAhmadFadzilMHani http://ieeexplore.ieee.org/stamp/stamp.jsp?tp= &arnumber=6306209. [446] Franck P. Vidal, Pierre-Frґedґeric Villard, and Eґvelyne Lutton. Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy. IEEE Transactions on Biomedical Engineering, 59(10):2942­2949, October 2012. ga12aFPVidal http://ieeexplore.ieee.org/xpl/articleDetails. jsp?arnumber=6269065. [447] Luis A. Clementi, Jorge R. Vega, and Luis M. Gugliotta. Particle size distribution of multimodal polymer dispersions by multiangle dynamic light scattering. solution of the inverse problem on the basis of a genetic algorithm. Particle & Particle Systems Characterization, 27(5-6):146­157, March 2012. ga12aLuisAClementi http://onlinelibrary.wiley.com/doi/10.1002/ppsc.201000011/pdf. [448] Yesim Serinagaoglu Dogrusoz and Alireza Mazloumi Gavgani. Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints. Medical & Biological Engineering & Computing, 51(4):367­375, 2013. PubMed ga13aYesimSerinagaogluDogrusoz http://www.ncbi.nlm.nih.gov/pubmed/23224834. [449] Altan Turgun. Determination of physical properties of a porous seabed from reflection amplitude data by using the genetic algorithm. The Journal of the Acoustical Society of America, 96(5):3223­3224, November 1994. NASA ADS ga94aATurgun. [450] S. Billings, Brian L. N. Kennett, and Malcolm S. Sambridge. Hypocentre location: Genetic algorithms incorporating problem specific information. Geophysics Journal International, 61(6):1715­1727, NovemberDecember 1994. [1084] ga94aBillings.
76
Genetic algorithms in mathematics and statistics
[451] D. F. Gingras and P. Gerstoft. Inversion of acoustic field data using genetic algorithms: Shallow-water results. The Journal of the Acoustical Society of America, 96(5):3234, November 1994. NASA ADS ga94aDFGingras. [452] Paul S. Lewis and John C. Mosher. Genetic algorithms for neuromagnetic source reconstruction. In Proceedings of the 1994 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP94), volume 5-I, pages 293­300, Adelaide (Australia), 19.-22. April 1994. IEEE, New York. P64575/95 ga94aLewis. [453] Masayuki Nakamura and Masataka Tanaka. Application of genetic algorithm to elastodynamic inverse analysis for defect identification. Railw. Gaz. Int., 150(9):1430­1436, September 1994. * EI M007984/95 ga94aNakamura. [454] David John Nettleton and Roberto Garigliano. Evolutionary algorithms and a fractal inverse problem. Journal of Biological and Information Processing Systems (BioSystems), 33(?):221­231, ? 1994. Nettleton ga94aNettleton. [455] T. J. Hayward and T. C. Yang. Adaptation of genetic-algorithm search for matched-field inversion of ocean bottom compressional wave speed profiles. The Journal of the Acoustical Society of America, 96(5):3234, November 1994. NASA ADS ga94aTJHayward. [456] Yoshiaki Tanaka, Akio Ishiguro, and Yoshiki Uchikawa. An analytical method for inverse problems in electromagnetics using genetic algorithms. Transactions of the Institute of Electrical Engineers of Japan C, 114-D(6):689­696, June 1994. (in Japanese) * EEA 64063/94 ga94bYTanaka. [457] Masato Enokizono and Yoshinori Akinari. Estimation of current distribution by a hybrid genetic algorithm and sampled pattern matching method. IEEE Transactions on Magnetics, 31(3):2012­2015, May 1995. (Proceedings of the 6th Biennial IEEE Conference on Electromagnetic field Computation (CEFC'94), Grenoble (France), 5.-7. Jul 1994) ga95aEnokizono. [458] Matthew R. Jones, Akira Tezuka, and Yukio Yamada. Thermal tomographic methods. Kikai Gijutsu Kenkyusho Shoho, 49(1):32­43, January 1995. * EI M097369/95 ga95aMRJones. [459] Shigeru Obayashi and Susumu Takanashi. Genetic algorithm for aerodynamic inverse optimization problem. In IEE/IEEE Sheffield '95 [1076], pages 7­12. ssq ga95aObayashi. [460] Miroslav Raudenskyґ, Keith A. Woodbury, J. Kral, and Toaґs Brezina. Genetic algorithm in solution of inverse heat conduction problems. Numer. Heat Transfer Part B Fundam., 28(3):293­306, OctoberNovember 1995. * EI M021720/96 ga95aRaudensky. [461] Tomonan Furukawa. Genetic algorithms for real search space and their use for nonlinear inverse problems. Nippon Kikai Gakkai Ronbunshu A Hen, 61(586):1409­1415, 1995. EI M162201/95 ga95bFurukawa. [462] Sang Yong Yang, Lae-Jeong Park, Cheol Hoon Park, and Jung Woong Ra. A hybrid algorithm using genetic algorithm and gradient-based algorithm for iterative microwave inverse scattering. In ICEC'95 [1057], pages 450­455. prog. ga95bYang. [463] David John Nettleton. Evolutionary Algorithms in Artificial Intelligence: A Comparative Study Through Applications. PhD thesis, University of Durham, Department of Computer Science, UK, 1995. (ftp: //vega.dur.ac.ukpub/comp-sci/theses/dave-nettleton/part1-6.ps.gz) ga95cDJNettleton. [464] Jean-Pierre Hermand and Peter Gerstoft. Inversion of broad-band multitone acoustic data from the YELLOW SHARK summer experiments. IEEE Transactions on Oceanic Engineering, 21(4):324­346, October 1996. ga96aJ-PHermand. [465] J. Krejsa, L. Slama, J. Horsky, Miroslav Raudenskyґ, and B. Patikova. A comparison of traditional and non-classical methods for solving inverse heat conduction problem. In ?, editor, Proceedings of the 4th International Conference - Heat Transfer 96, volume ?, pages 451­460, Udine, Italy, July 1996. Computational Mechanics Publications, Ltd., Southhampton, UK. A97-30951 ga96aJKrejsa. [466] M. Kishimoto, K. Sakasai, and K. Ara. Solution of electromagnetic inverse problem using combinational method of Hopfield neural network and genetic algorithm. Journal of Applied Physics, 79(1):1­7, January 1996. ga96aKishimoto. [467] R. L. Wood. Inverse thermal field problem based on noisy measurements: Comparison of a genetic algorithm and the sequential function specification method. Engineering Computations, 13(6):43­59, 1996. ga96aRLWood. [468] Tang Renyuan, Yang Shiyou, Li Yan, Wen Geng, and Mei Tiemin. Combined strategy of improved simulated annealing and genetic algorithm for inverse problem. IEEE Transactions on Magnetics, 32(3):1326­ 1329, May 1996. ga96aRenyuan.
Bibliography
77
[469] S. Russenschuck. Synthesis, inverse problems and optimization in computational electromagnetics. International Journal of Numerical Modeling: Electronic networks, Devices and Fields, 9(1-2):45­57, 1996. Johnson/bib ga96aRussenschuck. [470] Lubormґir Slґama, Miroslav Raudenskyґ, J. Horskyґ, Tomaґs Brezina, and Jirґi Krejsa. Evaluation of quenching test of rotating roll with unknown time constant of sensor using genetic algorithm. In Osmera [1077], pages 149­154. ga96aSlama. [471] N. Tsuda, K. Kuroda, and Y. Suzuki. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE Transactions on Biomedical Engineering, 43(10):1029­1037, 1996. EEA110911/96 ga96aTsuda. [472] B. Williams. Solving control, and inverse problems with the GA-bumptree. In Proceedings of the International ICSC Symposia on Intelligent Industrial Automation and Soft Computing, pages B264­270, Reading, MA, 26.-28. March 1996. Int. Comput. Sci. Conventions. Millet, Alta. (Canada). CCA77739/96 ga96aWilliams. [473] R. L. Wood. Genetic algorithm behaviour in the solution of an inverse thermal field problem. Eng. Comput. (UK), 13(5):38­56, 1996. EI M143090/96 ga96aWood. [474] Yang Xuan and Liang Dequn. An improved genetic algorithm of solving IFS code of fractal image. In Proceedings of the 3rd International Conference on Signal Processing, volume 2, pages 1405­1408, Beijing (China), 14.-18. October 1996. IEEE, New York, NY. CCA70904/97 ga96aYangXuan. [475] Ivanoe De Falco, Antonio Della Cioppa, R. Del Balio, and E. Tarantino. Investigating a parallel breeder genetic algorithm on the inverse aerodynamic design. In Voigt et al. [1061], pages 982­991. ga96bDeFalco. [476] Andrew Curtis and Roel Snieder. Reconditioning inverse problems using the genetic algorithm and revised parameterization. Geophysics, 62(5):1524­1532, 1997. EI M005558/98 ga97aAnCurtis. [477] B. Ennaciri, Driss Ouazar, K. El Harrouni, A. H. D. Cheng, and D. Esselaoui. Boundary inverse problem of Helmholtz operator by genetic algorithms and boundary elements. In Proceedings of the 12th International Conference Boundary Element Technology, pages 131­139, Knoxville, TN, 9.-11. April 1997. Computational Mechanics Publications, Ltd., Southhampton, UK. A97-32275 ga97aEnnaciri. [478] H. Y. Li and C. Y. Yang. Genetic algorithm for inverse radiation problems. Int. J. Heat Mass Transf., 40(7):1545­1549, May 1997. * EI M082984/97 ga97aHYLi. [479] A. Gottvald. A survey of inverse methodologies, meta-evolutionary optimization and Bayesian statistics: applications to in vivo MRS. Int. J. Appl. Electromagn. Mater. (Netherlands), 8(1):17­44, 1997. EEA61729/97 ga97bGottvald. [480] A. A. Khwaja, M. O. Rahman, and M. G. Wagner. Inverse kinematics of arbitrary robotic manipulators using genetic algorithms. In Advances in Robot Kinematics: Analysis and Control, pages 375­382. 1998. P84041 ga98aAAKhwaja. [481] E. Rydygier. Inverse problems solved with artificial intelligence methods. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 2, pages 1284­1288, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). CCA75650/99 ga98aERydygier. [482] T. Haraszti. Solving the inverse scattering problem by genetic algorithm. In Proceedings of the International School and Symposium on Small Angle Scattering, pages 76­77, Matrahaza, Hungary, 8.-11. October 1998. Central Research Inst. Physics Hungarian Academy Sciences, Budabest. P85273 ga98aHaraszti. [483] P. Ratilal. Subspace approach to inversion by genetic algorithms involving multiple frequencies. J. Comput. Acoust. (Singapore), 6(1-2):99­115, 1998. PA32403/99 ga98aRatilal. [484] S. M. Jesus. Can maximum likelihood estimators improve genetic algorithm search in geoacoustic inversion? J. Comput. Acoust. (Singapore), 6(1-2):73­82, 1998. PA32549/99 ga98aSMJesus. [485] S. Matsushita, T. Furuhashi, and H. Tsutsui. Fuzzy modeling using genetic algorithm in a framework of inverse problem solving. In Proceedings of the 5th International Conference on Soft Computing and Information/Intelligent Systems, volume 1, pages 503­506, Fukuoka, Japan, 16.-20. October 1998. World Scientific, Singapore. CCA61004/99 ga98aSMatsushita. [486] S. Ohtani and H. Furuya. Designing production rules for geometrical configurations using genetic operations. In Proceedings of the Inverse Problems in Engineering Mechanics, pages 561­570, Nagano, Japan, March 1998. Elsevier Science Publ B V, Amsterdam. P83069 ga98aSOhtani. [487] Kimmo Uutela, Matti HaЁmaЁlЁainen, and Riitta Salmelin. Global optimization in the location of neuromagnetic sources. IEEE Transactions on Biomedical Engineering, 45(6):716­723, June 1998. ga98aUutela.
78
Genetic algorithms in mathematics and statistics
[488] V. V. Toropov and Luis F. Alvarez. Application of genetic programming and response-surface methodology to optimization and inverse problems. In Proceedings of the Inverse Problems in Engineering Mechanics, pages 551­560, Nagano, Japan, March 1998. Elsevier Science Publ B V, Amsterdam. P83069 ga98aVVToropov. [489] J. Skaar and K. M. Risvik. Genetic algorithm for the inverse problem in synthesis of fiber gratings. In Proc. SPIE - Int. Soc. Opt. Eng. (USA), volume SPIE-3483, pages 273­277, 1998. PA65995/99 ga98bJSkaar. [490] S. Russenschuck. Superconducting magnets for the LHC-conception, optimization and inverse problem solving. Elektrie. (Germany), 52(7-9):194­200, 1998. In English PA72969/99 ga98bRussenschuck. [491] Johannes Skaar and Knut Magne Risvik. A genetic algorithm for the inverse problem in synthesis of fiber gratings. Journal of Lightwave Technology, 16(10):1928­1932, October 1998. ga98cJSkaar. [492] Bruno Hernandez and Fabrice Cotton. Contribution of radar interferometry to a two-step inversion of the kinematic process of the 1992 Landers earthquake. Journal of Geophysical Research, 104(B6):13083­13099, 10. June 1999. * A99-34869 ga99aBHernandez. [493] Erfu Yang, Zhenpeng Zhang, and Guoqiu Liu. Model and algorithm of inverse problems for the fault diagnosis of propulsion systems. Beijing University of Aeronautics and Astronautics, Journal, 25(6):684­ 687, December 1999. (in Chinese) * A00-26024 ga99aErfuYang. [494] Hang Zhang, Sailing He, and Wei Sun. Applications of genetic algorithms to an inverse problem of light propagation in tissues: reconstruction of the location and size of a tumor in a tissue volume. In Qingming Luo, Britton Chance, Lihong V. Wang, and Steven L. Jacques, editors, 1999 International Conference on Biomedical Optics, volume SPIE-3863, pages 49­54, ?, September 1999. The International Society for Optical Engineering. * www/SPIE Web ga99aHZhang. [495] M. Musil, M. J. Wilmut, and N. R. Chapman. A hybrid simplex genetic algorithm for estimating geoacoustic parameters using matched-field inversion. IEEE Journal of Oceanic Engineering, 24(3):358­369, 1999. CCA69612/99 ga99aMMusil. [496] Malcolm S. Sambridge. Geophysical inversion with a neighbourhood algorithm-II. appraising the ensemble. Geophysical Journal International, 138(3):727­746, September 1999. NASA ADS ga99aMSambridge. [497] Mao Ye, Shimin Wang, Yong Lu, Tao Hu, Zhen Zhu, and Yiqian Xu. Inversion of particle-size distribution from angular light-scattering data with genetic algorithms. Applied Optics, 38(12):2677­2685, 20. April 1999. NASA ADS ga99aMYe. [498] Pierre Lutton, Evelyne Lutton, Frґedґeric Raynal, and Marc Schoenauer. Polar IFS + individual genetic programming = efficient IFS inverse problem solving. Research Report 3849, INRIA, 1999. ga99aPierreCollet. [499] S. J. Louis, Qinxue Chen, and S. Pullammanappallil. Seismic velocity inversion with genetic algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 855­861, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA84948/99 ga99aSJLouis. [500] Sankar Kumar Nath, Subrata Chakraborty, Sanjiv Kumar Singh, and Nilanjan Ganguly. Velocity inversion in cross-hole seismic tomography by counter-propagation neural network, genetic algorithm and evolutionary programming techniques. Geophysical Journal International, 138(1):108­124, July 1999. NASA ADS ga99aSKNath. [501] Malcolm S. Sambridge. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space. Geophysical Journal International, 138(2):479­494, August 1999. NASA ADS ga99bMSambridge. [502] Paul Charbonneau and S. McIntosh. Preconditioning the DEM(T) inverse problem. In ?, editor, American Astronomical Society, 194th AAS Meeting, volume 31, page ?, Chicago, Illinois, May 1999. American Astronomical Society. NASA ADS ga99bPaulCharbonneau. [503] Ivan Zelinka and Jouni Lampinen. Inverse fractal problem by means of evolutionary algorithms. In Proceedings of the 5th International Conference on Soft Computing, pages 430­435, Brno (Czech Republic), 9.-12. June 1999. Faculty of Mechanical Engineering, Brno University of Technology. ga99bZelinka. [504] Evelyne Lutton and J. Lґevy Vґehel. Optimization of fractal functions using genetic algorithms. In M. M. Novak, editor, Fractals in the Natural and Applied Sciences, volume 41 of IFIP Transactions A - Computer Science and Technology, pages 275­288, London, 7.-10. September 1993. Elsevier Science Publ. B. V., Amsterdam. (also available as [505]) P60395/94 Lutton/News ga:Lutton93a. [505] Evelyne Lutton and J. Lґevy Vґehel. Optimization of fractal functions using genetic algorithms. Research Report 1941, INRIA, 1993. (also available as [504]) Lutton/News ga:Lutton93aa.
Bibliography
79
[506] Paul S. Lewis and John C. Mosher. Genetic algorithms for minimal source reconstructions. In Avtar Singh, editor, Proceedings of the Twenty-Seventh Asilomar Conference on Signals, Systems & Computers, volume 1, pages 335­338, Pacific Grove, CA, 1.-3. November 1993. IEEE Computer Society Press, Los Alamitos, CA. ga:PSLewis93a. [507] Neil Pendock. A genetic algorithm for conductivity imaging of airborne electromagnetic data. In N. K. Delgrande, I. Cindrich, and P. B. Johnson, editors, Underground and Obscured Object Imaging and Detection, volume SPIE-1942, pages 129­136, Orlando, FL, 15. -16. April 1993. The International Society for Optical Engineering. * P59355/94 EI M108312/94 ga:Pendock93a. [508] Yoshiaki Tanaka, Akio Ishiguro, and Yoshiki Uchikawa. A genetic algorithms' application to inverse problems in electromagnetics. In Forrest [1073]. ga:Uchikawa93b. [509] Reena Agarwal and Indranil Sen Gupta. On the synthesis of gate matrix layout. In Proceedings of the 7th International Conference on VLSI Design, pages 203­206, Calcutta (India), 5.-8. January 1994. IEEE Computer Society Press, Los Alamitos, CA. EI M141914/94 ga94aAgarwal. [510] Vladimir Brusic, C. Schonbach, M. Takiguchi, Victor B. Ciesielski, and Leonard C. Harrison. Application of genetic search in derivation of matrix models of peptide binding to MHC molecules. In ?, editor, Proceedings of the Fifth International Conference on Intelligent Systems for Molecular Biology, pages 75­83, Halkidiki (Greece), 21.-26. June 1997. AAAI Press, MenloPark, CA. * CCA 58984/99 ga97aVBrusic. [511] Michael Levin. Practical handbook of genetic algorithms. In Chambers [1065], chapter 5. Matrix-based GA representations in a model of evolving animal communication, pages 103­117. ga99aMLevin. [512] Wen-Yang Lin. Parallel sparse matrix ordering: quality improvement using genetic algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2295­2301, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA80209/99 ga99aWen-YangLin. [513] Hugh M. Cartwright and Stephen P. Harris. Analysis of the distribution of airborne pollution using genetic algorithms. Atmospheric Environment Part A General Topics, 27A(12):1783­1791, August 1993. ga:Cartwright93b. [514] Christian Prins. Competitive genetic algorithms for the open-shop scheduling problem. Math. Methods Oper. Res., 52(3):389­411, ? 2000. www /MathRev1810422 ga00aCPrins. [515] Jian-Der Lee. Three-view matching algorithm for multipolyhedron reconstruction using genetic algorithm. Comput. Math. Appl., 42(10-11):1465­1483, ? 2001. www /MathRev1861542 ga01aJ-DLee. [516] K. Fujii. Mathematical foundations of holonomic quantum computer. Rep. Math. Phys., 48(?):75­82, ? 2001. ga01aKFujii. [517] Abdollah Homaifar, H. Y. Lai, and Vance E. McCormick. System optimization of turbofan engines using genetic algorithms. Appl. Math. Modelling, 18(2):72­83, February 1994. * EI M058052/94 ga94bHomaifar. [518] Erkki MaЁkinen and Mika Sieranta. Genetic algorithms for drawing bipartite graphs. International Journal of Computer Math., 53(3-4):157­166, ? 1994. ga94bMakinen. [519] R. N. Greenwell, J. E. Angus, and I. Finck. Optimal mutation probability for genetic algorithms. Math. Comput. Model. (UK), 21(8):1­11, April 1995. * CCA 36466/95 ga95aGreenwell. [520] J. Balakrishnan and P. D. Jog. Manufacturing cell formation using similarity coefficients and a parallel genetic TSP algorithm: Formulation and comparison. Math. Comput. Modelling, 21(12):61­73, 1995. [1085] CCA66272/95 ga95aJBalakrishnan. [521] F. M. Rabinowitz. Algorithm 744: a stochastic algorithm for global optimization with constraints. ACM Trans. Math. Softw., 21(2):194­213, 1995. CCA77638/95 ga95bRabinowi. [522] A. Fadda and Marc Schoenaur. Identification by evolutionary recurrent neural nets. Z. Angew. Math. Mech. (Germany), 76(3):421­422, 1996. CCA401/97 ga96aFadda. [523] Matthias LoЁwe. On the convergence of genetic algorithms. Exposition. Math., 14(4):289­312, ? 1996. www /MathRev98b:60129 ga96aMLowe. [524] N. Kubota, K. Shimojima, and T. Fukuda. The role of virus infection in a virus-evolutionary genetic algorithm. Appl. Math. Comput. Sci. (Poland), 6(3):415­429, 1996. CCA26471/97 ga96aNKubota. [525] L. Magnus Rattray and Jonathan Shapiro. The dynamics of a genetic algorithm for a simple learning problem. J. Phys. A. Math. Gen. (UK), 29(23):7451­7473, 1996. ga96aRattray. [526] W. Zhai, P. Kelly, and W.-B. Gong. Genetic algorithms with noisy fitness. Math. Comput. Model. (UK), 23(11-12):131­142, 1996. CCA61019/96 ga96aWZhai.
80
Genetic algorithms in mathematics and statistics
[527] Baoding Liu. Dependent-chance goal programming and its genetic algorithm based approach. Math. Comput. Model. (UK), 24(7):43­52, 1996. CCA94487/96 ga96bBLiu. [528] Richard Comulkiewicz and Jay H. Beder. Selection gradient of an infinite-dimensional trait. SIAM J Appl. Math., 56(2):509­523, 1996. EI M078234/96 ga96bComulkie. [529] D. P. Kroese and V. Schmidt. Light-traffic analysis for queues with spatially distributed arrivals. Math. Oper. Res. (USA), 21(1):135­157, 1996. CCA60876/96 ga96bKroese. [530] Zbigniew Michalewicz and M. Michalewicz. Evolutionary computation: main paradigms and current directions. Appl. Math. Comput. Sci. (Poland), 6(3):393­413, 1996. CCA26470/97 ga96eMichalewicz. [531] J. Balicki, A. Stateczny, and B. Zak. Genetic algorithms and Hopfield neural networks for solving combinatorial problems. Appl. Math. Modelling, 7(3):567­592, 1997. CCA12397/98 ga97aBalicki. [532] G. Chen and L. Hong. A genetic algorithm based multi-dimensional data assocoation algorithm for multisensor-multi-target tracking. Math. Comput. Model. (UK), 26(4):57­69, 1997. CCA4127/98 ga97aGChen. [533] Francisco Herrera and Luis Magdalena. Genetic fuzzy systems. Tatra Mt. Math. Publ. (Slovakia), 13:93­ 121, 1997. CCA85846/97 ga97aHerrera. [534] Il-Kwon Jeong and Ju-Jang Lee. Evolving multi-agents using a self-organizing genetic algorithm. Appl. Math. Comput. (USA), 88(2-3):293­303, 1997. CCA666/98 ga97aIl-Jeong. [535] E. E. Malyutina. Application of genetic algorithms in the analysis of active databases. Sc. Univ. Comput. Math. Cybern. (USA), (2):24­27, 1997. CCA63967/98 ga97aMalyutin. [536] S. Ulla. An evolutionary approach for locating economic facilities. Acta Polytech. Scand. Math. Comput. Manag. Eng. Ser. (Finland), (Ma83):1­46, 1997. CCA45733/97 ga97aUlla. [537] Il-Kwon Jeong and Ju-Jang Lee. Evolving multi-agents using a self-organizing genetic algorithm. Appl. Math. Comput., 88(2-3):293­303, ? 1997. www /MathRev98h:92008 ga97bI-KJeong. [538] Aleksandra B. Djurisiґc, J. M. Elazar, and A. D. Rakic. Genetic algorithms for continuous optimization problems-a concept of parameter-space size adjustment. J. Phys. A, Math. Gen. (UK), 30(22):7849­7861, 1997. PA20257/98 ga97dABDjurisic. [539] D. Barrios, L. Malumbres, and J. Rґios. Convergence conditions of genetic algorithms. Int. J. Comput. Math., 68(3-4):231­241, ? 1998. www /MathRev99k:90125 ga98aDBarrios. [540] N. M. Ershov. Neural network architecture optimization by genetic algorithms. Mosc. Univ. Comput. Math. Cybern. (USA), (4):30­32, 1998. CCA82145/99 ga98aNMErshov. [541] Thomas Unger. Genetic algorithms: a survey of some mathematical models. I. Irish Math. Soc. Bull., ?(41):57­71, ? 1998. www /MathRev2000d:90126 ga98aTUnger. [542] Y. G. Zhang, M. Sugisaka, and X. J. Li. Lifelike artificial trees based on growth iterated function system. Appl. Math. Comput. (USA), 91(1):3­8, 1998. CCA58957/98 ga98aYGZhang. [543] S. Boor, V. Kvasnicka, and J. Pospichal. Solution of fuzzy relation equations by genetic algorithms. Tatra Mt. Math. Publ. (Slovakia), 16:225­234, 1999. CCA77121/99 ga99aSBoor. [544] S. Vukovic and L. Sopta. Binary-coded and real-coded genetic algorithm in pipeline flow optimization. Math. Commun. (Croatia), 4(1):35­42, 1999. CCA60558/99 ga99aVukovic. [545] Z. Kowalczuk and P. Suchomski. Evolutionary multi-objective Pareto optimisation of diagnostic state observers. Int. J. Appl. Math. Comput. Sci. (Poland), 9(3):711­135, 1999. CCA94402/99 ga99bKowalczuk. [546] Xiaodong Li, Tianzi Jiang, and D. J. Evans. Medical image reconstruction using a multi-objective genetic local search algorithm. International Journal of Computer Mathematics, 74(?):301­314, ? 2000. ga00XiaodongLi. [547] K. Hirayama and H. Kawai. A solving method of an MDP with a constraint by genetic algorithm. Mathematical and Computer Modeling, 31(10-12):165­173, May-June 2000. * www /ScienceDirect ga00aKHirayama. [548] Y. J. Cao, L. Jiang, and Q. H. Wu. An evolutionary programming approach to mixed-variable optimization problems. Applied Mathematical Modelling, 24(12):931­942, December 2000. TTKK ga00aYJCao. [549] Nirupam Chakraborti, R. Kumar, and D. Jain. A study of the continuous casting mold using a pareto-converging genetic algorithm. Applied Mathematical Modelling, 25(4):287­297, March 2001. ga01aNChakraborti.
Bibliography
81
[550] Oliver EbenhoЁh and Reinhart Heinrich. Evolutionary optimization of metabolic pathways. theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bulletin of Mathematical Biology, 63(?):21­55, ? 2001. (www.idealibrary.com) ga01aOEbenhoh. [551] N. Chakraborti. Genetic algorithms in ferrous production metallurgy. Surveys on Mathematics for Industry, 10(?):269­291, ? 2002. ga02aNChakraborti. [552] Reid Porter, Neal Harvey, Simon Perkins, James Theiler, Steven Brumby, Jeffrey Bloch, Maya Gokhale, and John Szymanski. Optimizing digital hardware perceptrons for mult-spectral image classification. Journal of Mathematical Imaging and Vision, 19(2):133­150, 2003. ga03aReidPorter. [553] Haiyan Chen and Fuji Zhang. The rapid mixing of random walks defined by an n-cube. Advances in Applied Mathematics, ?(?):?, ? 2004. to appear * www /ScienceDirect ga04aHaiyanChen. [554] Fabio Freschi and Maurizio Repetto. Comparison of artificial immune systems and genetic algorithms in electrical engineering optimization. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 25(4):792­811, ? 2006. ga06aFabioFreschi. [555] L. Wang and T. J. Kazmierski. VHDL-AMS based genetic optimisation of fuzzy logic controllers. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26(2):452­465, ? 2007. ga07aLWang. [556] Alireza Rezaee. Genetic symbiosis algorithm generating test data for constraint automata. Applied and Computational Mathematics, 6(1):126­137, ? 2008. ga08aARezaee. [557] Jih-Gau Juang, Ren-Wei Lin, and Wen-Kai Liu. Comparison of classical control and intelligent control for a MIMO system. Applied Mathematics and Computation, 205(2):778­791, November 2008. ga08aJih-GauJuang. [558] Serena H. Chen, Anthony J. Jakeman, and John P. Norton. Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, 78:379­400, 2008. ga08aSerenaHChen http://mycourses.ntua.gr/courses/PSTGR1031/document/AI_ Techniques_Review_Jackeman.pdf. [559] Manuel Herrera, Joaquґin Izquierdo, Idel Montalvo, Juan Gargґia-Armengol, and Josґe V. Roig. Identification of surgical practise patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, ?(?):?, ? 2009. (in press) ga09aManuelHerrera. [560] Odetunji A. Odejobi and Lasisi E. Umoru. Applications of soft computing techniques in materials engineering: a review. African Journal of Mathematics and Computer Science Research, 2(7):104­131, August 2009. ga09aOAOdejobi. [561] Wei Wei, Yixiong Feng, Jianrong Tan, and Zhongkai Li. Product platform two-stage quality optimization design based on multiobjective genetic algorithm. Computers and Mathematics with Applications, ?(?):?, ? 2009. (in press) ga09aWeiWei. [562] Hemmak Allaoua and Ibrahim Osmane. Variable parameters lengths genetic algorithm for minimizing earliness-tardiness penalties of single machine scheduling with a common due date. Electronic Notes in Discrete Mathematics, 36:471­478, August 2010. ga10aHemmakAllaoua http://www.sciencedirect. com/science/article/pii/S1571065310000612. [563] Juan J. Hernandez, Rosario Ballesteros, and Josep Sanz-Argent. Reduction of kinetic mechanisms for fuel oxidation through genetic algorithms. Mathematical and Computer Modelling, 52(7-8):1185­ 1193, October 2010. ga10aJuanJHernandez http://www.sciencedirect.com/science/article/pii/ S0895717710000993. [564] D. Venkatesan, K. Kannan, and S. Raja Balachandar. Meta-heuristic for the set covering problem based on a new genetic algorithm. International Journal of Mathematical Sciences and Applications, 1(3):1089­1098, September 2011. ga11aDVenkatesan http://ijmsa.yolasite.com/resources/6--sep.pdf. [565] Petteri Suominen, Anders Brink, and Tapio Salmi. Parameter estimation of complex chemical kinetics with covariance matrix adaptation evolution strategy. Match-Communications in Mathematical and in Computer Chemistry, 68(2):469­476, ? 2012. ISI ga12aPetteriSuominen . [566] Qiu Guan, Wanliang Wang, and Guang Wu. Modeling and representation of human hearts for volumetric measurement. Computational and Mathematical Methods in Medicine, 2012:389463, 2012. PubMed ga12aQiuGuan http://www.ncbi.nlm.nih.gov/pubmed/22162723. [567] Ming Yang, Josiah Poon, Shaomo Wang, Lijing Jiao, Simon Poon, Lizhi Cui, Peiqi Chen, Daniel ManYuen Sze, and Ling Xu. Application of genetic algorithm for discovery of core effective formulae in TCM clinical data. Computational and Mathematical Methods in Medicine, 2013:971272, 2013. PubMed ga13aMingYang http://www.ncbi.nlm.nih.gov/pubmed/24288577.
82
Genetic algorithms in mathematics and statistics
[568] Mingfeng Jiang, Shanshan Jiang, Lingyan Zhu, Yaming Wang, Wenqing Huang, and Heng Zhang. Study on parameter optimization for support vector regression in solving the inverse ECG problem. Computational and Mathematical Methods in Medicine, 2013:158056, 2013. PubMed ga13aMingfengJiang http: //www.ncbi.nlm.nih.gov/pubmed/23983808. [569] P. Festa. A biased random-key genetic algorithm for data clustering. Mathematical Biosciences, 245(1):76­ 85, September 2013. PubMed ga13aPFesta http://www.ncbi.nlm.nih.gov/pubmed/23896381. [570] Pavlos Progias and Georgios Ch. Sirakoulis. An FPGA processor for modelling wildfire spreading. Mathematical and Computer Modelling, 57(5-6):1436­1452, 2013. ISI/auto ga13aPavlosProgias . [571] Rasoul Sali, Hamidreza Roohafza, Masoumeh Sadeghi, Elham Andalib, Hassan Shavandi, and Nizal Sarrafzadegan. Validation of the revised stressful life event questionnaire using a hybrid model of genetic algorithm and artificial neural networks. Computational and Mathematical Methods in Medicine, 2013:601640, 2013. PubMed ga13aRasoulSali http://www.ncbi.nlm.nih.gov/pubmed/23476715. [572] Santiago-Omar Caballero-Morales. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech. Computational and Mathematical Methods in Medicine, 2013. PubMed ga13aSantiago-OmarCaballero-Morales http://www.ncbi.nlm.nih.gov/pubmed/24222784. [573] Sebastien Menigot and Jean-Marc Girault. Optimization of contrast-to-tissue ratio by adaptation of transmitted ternary signal in ultrasound pulse inversion imaging. Computational and Mathematical Methods in Medicine, 2013:297463, 2013. PubMed ga13aSebastienMenigot http://www.ncbi.nlm.nih.gov/ pubmed/23573167. [574] Shinq-Jen Wu and Cheng-Tao Wu. Computational optimization for S-type biological systems: cockroach genetic algorithm. Mathematical Biosciences, 245(2):299­313, October 2013. PubMed ga13aShinq-JenWu http://www.ncbi.nlm.nih.gov/pubmed/23927855. [575] Sliman Arrag, Abdellatif Hamdoun, Abderrahim Tragha, and Salah Eddine Khamlich. Replace AES key expansion algorithm by modified genetic algorithm. Applied Mathematical Sciences, 7(144):7161­7171, 2013. ga13aSlimanArrag . [576] Yongyut Amaritsakul, Ching-Kong Chao, and Jinn Lin. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation. Computational and Mathematical Methods in Medicine, 2013. PubMed ga13aYongyutAmaritsakul http://www.ncbi.nlm.nih.gov/pubmed/23983810. [577] I. Bahri, L. Idkhajine, E. Monmasson, and M. E. A. Benkhelifa. Optimal hardware/software partitioning of a system on chip fpga-based sensorless ac drive current controller. Mathematics and Computers in Simulation, 90(7-8):145­161, 2013. ISI/auto ga13bIBahri . [578] J. Senthilnath, Naveen P. Kalro, and J. A. Benediktsson. Accurate point matching based on multiobjective genetic algorithm for multi-sensor satellite imagery. Applied Mathematics and Computation, 236:546­564, June 2014. ga14aJSenthilnath http://www.sciencedirect.com/science/article/pii/ S0096300314004329. [579] Kim Jun Woo. A job shop scheduling game with GA-based evaluation. Applied Mathematics and Information Sciences, 8(5):2627­2634, 2014. ga14aKimJunWoo http://www.naturalspublishing.com/files/ published/ri5wa38791349l.pdf. [580] Mary Opokua Ansong, Jun Steed Huang, Mary Ann Yeboah, Han Dun, and Hongxing Yao. Non-gaussian hybrid transfer functions: Memorizing mine survivability calculations. Mathematical Problems in Engineering, 2014(ID 623720), 2014. ga14aMaryOpokuaAnsong http://www.hindawi.com/journals/mpe/ aa/623720/. [581] Changxi Ma, Ruichun He, and Fuquan Pan. Emergency facilities location optimisation for hazardous materials transportation under the background of counterterrorism. International Journal of Computing Science and Mathematics, 6(4):­, 2015. * Google scholar ga15aChangxiMa http://www.inderscienceonline. com/doi/abs/10.1504/IJCSM.2015.071819. [582] Mary Opokua Ansong, Jun Steed Huang, Mary Ann Yeboah, Han Dun, , and Hongxing Yao. Nongaussian hybrid transfer functions: Memorizing mine survivability calculations. Mathematical Problems in Engineering, 2015:623720, 2015. ga15aMaryOpokuaAnsong http://www.hindawi.com/journals/mpe/ 2015/623720/. [583] Wensheng Xiao, Lei Wu, Xue Tian, and Jingli Wang. Applying a new adaptive genetic algorithm to study the layout of drilling equipment in semisubmersible drilling platforms. Mathematical Problems in Engineering, 2015:146902, 2015. ga15aWenshengXiao http://www.hindawi.com/journals/mpe/2015/ 146902/abs/.
Bibliography
83
[584] Akiko N. Aizawa and Benjamin W. Wah. A sequential sampling procedure for genetic algorithms. Computers & Mathematics with Applications, 27(9/10):77­82, 1994. (Proceedings of the 5th International Workshop of the Bellman Continuum, Waikoloa, HI, Jan. 11.-12. 1993) ga94aAizawa. [585] Kalyanmoy Deb and David E. Goldberg. Sufficient conditions for deceptive and easy binary functions. Annals of Mathematics and Artificial Intelligence, 10(4):?, ? 1994. toc ga94aDeb. [586] Fred Glover. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics, 49(1-3):231­255, 30. March 1994. * EEA 48819/94 ga94aGlover. [587] James Milton Yunker and J. D. Tew. Simulation optimization by genetic search. Mathematics and Computers in Simulation, 37(1):17­28, 1994. CCA3782/95 ga94aJMYunker. [588] G. J. Koehler. A proof of the Vose-Liepins conjecture. Annals of Mathematics and Artificial Intelligence, 10(4):409­422, ? 1994. CCA 75461/94 ga94aKoehler. [589] Antoon Kolen and Erwin Pesch. Genetic local search in combinatorial optimization. Discrete Applied Mathematics, 48(3):273­284, 15. February 1994. * EEA 33495/94 ga94aKolen. [590] M. W. Gutowski. Smooth genetic algorithm. Journal of Physics A: Mathematical and General, 27(23):7893­ 7904, December 1994. NASA ADS ga94aMWGutowski. [591] David M. Tate, C. Tunasar, and Alice E. Smith. Genetically improved presequences for Euclidean traveling salesman problems. Mathematical and Computer Modelling, 20(2):135­143, July 1994. * CCA 66872/94 ga94aTate. [592] David B. Fogel. Applying evolutionary programming to selected control problems. Computers & Mathematics with Applications, 27(11):89­104, 1994. ga94bFogel. [593] Nicholas J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence, 10(4):339­384, ? 1994. CCA 75460/94 ga94bRadcliffe. [594] Michael D. Vose. A closer look at mutation in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 10(4):423­434, ? 1994. CCA 75462/94 ga94bVose. [595] Terence C. Fogarty and N. S. Ireson. Bayesian classifiers for credit control ­ a comparison with other machine learning methods. IMA Journal of Mathematics Applied in Business and Industry, 5(?):63­75, ? 1994. Fogarty ga94fFogarty. [596] J. Kingdon and K. Feldman. Genetic algorithms and applications to finance. Applied Mathematical Finance, 2(2):89­116, June 1995. * ga95aJKingdon. [597] Nachbar. Genetic programming. The Mathematica Journal, 5(3):36­47, Summer 1995. toc/Mathematica ga95aNachbar. [598] Donald S. Szarkowicz. Investigating brachistochrone trajectories with a multi-stage real-parameter genetic algorithm. The International Journal of Mathematical Applications in Science and Technology, ?(?):?, ? 1995. (Submitted for publication) ga95aSzarkowicz. [599] G. Phanendra Babu, M. Narasimha Murty, and B. R. Ram. Clan/based evolutionary approach for solving control problems. Computers & Mathematics with Applications, 31(6):41­60, January 1996. ga96aBabu. [600] D. Boneh, C. Dunworth, R. J. Lipton, and J. Sgall. On the computational power of DNA. Discrete Applied Mathematics (Netherlands), 71(1-3):79­94, 1996. CCA12724/97 ga96aBoneh. [601] Dingwei Wang and S.-C. Fang. A semi-infinite programming model for earliness/tardiness production planning with a genetic algorithm. Computers & Mathematics with Applications, 31(8):95­106, 1996. ga96aDWang. [602] J. Zhao, R. Gorez, and V. Wertz. Genetic algorithms for the elimination of redundancy and/or rule contribution assessment in fuzzy models. Mathematics and Computers in Simulation, 41(1-2):139­148, June 1996. * EI M125467/96 ga96aJZhao. [603] Magnus Rattray and Jonathan L. Shapiro. The dynamics of a genetic algorithm for a simple learning problem. Journal of Physics A: Mathematical and General, 29(23):7451­7473, December 1996. NASA ADS ga96aMRattray. [604] Peter F. Stadler. Landscapes and their correlation functions. Journal of Mathematical Chemistry, 20(?):1­ 45, ? 1996. (http://www.tbi.univie.ac.at/$\sim$\studla/publications.html) ga96aPeterFStadler. [605] D. J. Reid. Genetic algorithms in constrained optimization. Mathematics and Computers in Modeling, 23(5):87­111, March 1996. * EEA 38812/96 ga96aReid.
84
Genetic algorithms in mathematics and statistics
[606] S. OЁ zyildirim. Three-country trade relations. a discrete dynamic game approach. Computers & Mathematics with Applications, 32(5):43­56, 1996. * ga96bOzyildirim. [607] Cezary Z. Janikow. Methodology for processing problem constraints in genetic programming. Computers & Mathematics with Applications, 32(8):97­113, 1996. ga96cJanikow. [608] A. Bansal, C. Cannings, and N. Sheehan. An evaluation of applications of the genetic algorithm to the problem of ordering genetic loci on human chromosomes using radiation hydrid data. IMA Journal of Mathematics Applied in Medicine and Biology, 14(3):161­187, ? 1997. * BA 129581/98 ga97aBansal. [609] Cha'o-Kuang Chen, Jin-Mu Lin, and Chieh-Li Chen. Error bounds estimate of weighted residuals method using genetic algorithms. Applied Mathematics and Computation, 81(2-3):207­219, February 1997. ga97aC-KChen. [610] F. Zaoui and C. Marchand. Using genetic algorithm for the optimization of electromegnetic devices. COMPEL ­ The International Journal for Computations and Mathematics in Electrical and Electronic Engineering, 17(1-3):181­188, 1997. P81213 ga97aFZaoui. [611] Min Qiu. Prioritising and scheduling road projects by genetic algorithm. Mathematics and Computers in Simulation, 43(3-6):569­574, 1997. CCA71583/97 ga97aMinQiu. [612] Rebecca J. Parsons and Mark E. Johnson. A case study in experimental design applied to genetic algorithms with applications to DNA sequence assembly. American Journal of Mathematical and Management Sciences, 17(3-4):369­396, ? 1997. ga97aRJParsons. [613] V. S. Desai, Daniel G. Conway, J. N. Crook, and G. A. Overstreet. Credit-scoring models in the credit.union environment using neural networks and genetic algorithms. IMA Journal of Mathematics Applied in Business and Industry (UK), 8(4):323­346, 1997. CCA100049/97 ga97aVSDesai. [614] Aleksandra B. Djurisiґc, Jovan M. Elazar, and A. D. Rakic. Genetic algorithms for continuous optimization problems - a concept of parameter-space size adjustment. Journal of Physics A: Mathematical and General, 30(22):7849­7861, November 1997. NASA ADS ga97cABDjurisic. [615] Baoding Liu. Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Computers & Mathematics with Applications, 36(7):79­89, 11. September 1998. ga98aBaodingLiu. [616] David E. Clark. Some current trends in evolutionary algorithm research exemplified by applications in computer-aided molecular design. MATCH ­ Communications in Mathematical and in Computer Chemistry, (38):85­98, October 1998. ga98aDEClark. [617] D. J. Reid. Constructing Petri net models using genetic search. Mathematics and Computers in Modeling, 27(8):85­103, 1998. CCA50861/98 ga98aDJReid. [618] I. Dumitrache and C. Buiu. Genetic learning of fuzzy controllers. Mathematics and Computers in Simulation, 49(1-2):13­26, 1998. CCA78860/99 ga98aDumitrache. [619] Jiafu Tang, Dingwei Wang, A. Ip, and R. Y. K. Fung. A hybrid genetic algorithm for a type of nonlinear programming problem. Computers & Mathematics with Applications, 36(5):11­21, 1998. ga98aJiafuTang. [620] M. Okamoto, T. Nonaka, S. Ochiai, and D. Tominaga. Nonlinear numerical optimization with use of a hybrid genetic algorithm incorporating the modified Powell method. Applied Mathematics and Computation, 91(?):63­72, ? 1998. Trabia ga98aMOkamoto. [621] Wilson Rivera-Gallego. A genetic algorithm for circulant Euclidean distance matrices. Applied Mathematics and Computation, 97(2&3):197­208, 15. December 1998. ga98aRivera-Gallego. [622] Xin Yao and Yong Liu. Towards designing artificial neural networks by evolution. Applied Mathematics and Computation, 91(1):83­90, April 1998. ga98bXinYao. [623] Carlos Barroґn, Susana Goґmez, David Romero, and A. Saavedra. A genetic algorithm for Lennard-Jones atomic clusters. Applied Mathematics Letters, 12(?):85­90, ? 1999. ga99aCBarron. [624] I. Dumitrache and C. Buiu. Genetic learning of fuzzy controllers. Mathematics and Computers in Simulation, 49(1-2):13­26, 1999. CCA78860/99 ga99aDumitrache. [625] Jiabao Guan and Mustafa M. Aral. Progressive genetic algorithm for solution of optimization problems with nonlinear equality and inequality constraints. Applied Mathematical Modelling, 23(4):329­343, April 1999. ga99aJiabaoGuan. [626] Gregor KjellstroЁm. The evolution in the brain. Applied Mathematics and Computation, 98(2-3):293­300, February 1999. ga99aKjellstrom.
Bibliography
85
[627] Marcus Charles Cowgill and R. J. Harvey. A genetic algorithm approach to cluster analysis. Computers and Mathematics with Applications, 37(7):99­108, March 1999. ga99aMCCowgill. [628] M. K. Mayer. A network parallel genetic algorithm for the one machine sequencing problem. Computers & Mathematics with Applications, 37(3):71­78, January 1999. ga99aMKMayer. [629] Peter F. Stadler and Robert Happel. Random field model for fitness landscape. Journal of Mathematical Biology, 38(?):435­467, ? 1999. (http://www.tbi.univie.ac.at/$\sim$\studla/publications.html) ga99aPeterFStadler. [630] P. Potocnik and I. Grabec. Empirical of antibiotic fermentation process using neural networks and genetic algorithms. Mathematics and Computers in Simulalation, 49(4-5):363­379, 1999. CCA93655/99 ga99aPotocnik. [631] R. J. M. Vaessens, E. H. L. Aarts, and J. H. van Lint. Genetic algorithms in coding theory - a table for A3(n, d). Discrete Applied Mathematics, 45(1):71­87, August 1993. ga:Aarts93a. [632] Eric Mjolsness, David H. Sharp, and Bradley K. Alpert. Scaling, machine learning, and genetic neural nets. Advances in Applied Mathematics, 10(2):137­163, December 1989. ACM/89 ga:Alpert89a. [633] S. Arunkumar and T. Chockalingam. Genetic search algorithms and their randomized operators. Computers & Mathematics with Applications, 25(5):91­100, 1993. ga:Arunkumar93. [634] Wolfgang Banzhaf. Self-replicating sequences of binary numbers. Computers & Mathematics with Applications, 26(7):1­8, 1993. ga:Banzhaf93c. [635] H. J. Bremermann. A method of unconstrained global optimization. Mathematical Biosciences, 9(?):1­15, 1970. ga:Bremermann70. [636] David R. B. Stockwell and Ian R. Noble. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and Computers in Simulation, 33(5-6):385­390, April 1992. ga:DRBStockwell92a. [637] Kenneth A. De Jong and William M. Spears. A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1):1­26, April 1992. ga:DeJong92e. [638] D. A. Diver. Application of genetic algorithms to the solution of ordinary differential equations. Journal of Physics A - Mathematical and General, 26(14):3503­3513, July 1993. ga:Diver93a. [639] Anon. EvolverT M 2.0 A genetic algorithm for spreadsheets. Computers & Mathematics with Applications, 26(12):94, 1993. ga:Evolver20. [640] Terence C. Fogarty, N. S. Ireson, and S. A. Battle. Developing rule-based systems for credit card applications from data with genetic algorithm. IMA Journal of Mathematics Applied in Business and Industry, 4(1):53­59, 1992. Fogarty ga:Fogarty92e. [641] D. D. Gemmill. Solution to the assortment problem via the genetic algorithm. Mathematical and Computer Modelling, 16(1):89­94, January 1992. * IAOR 53366/93 ga:Gemmill92a. [642] David E. Goldberg. Construction of high-order deceptive functions using low-order Walsh coefficients. Annals of Mathematics and Artificial Intelligence, 5(1):35­48, April 1992. ga:Goldberg92p. [643] John H. Holland. Searching nonlinear functions for high values. Applied Mathematics and Computation, 32(?):255­274, 1989. ga:Holland89c. [644] Lester Ingber and Bruce Rosen. Genetic algorithms and very fast simulated annealing: A comparison. Mathematical and Computer Modelling, 16(11):87­100, November 1992. ga:Ingber92. [645] James Freeman. Simulating a basic genetic algorithm. The Mathematica Journal, 3(2):52­56, 1993. ga:JFreeman93. [646] Zbigniew Michalewicz, Cezary Z. Janikow, and Jacek R. Krawczyk. A modified genetic algorithm for optimal control problems. Computers & Mathematics with Applications, 23(12):83­94, 1992. ga:Janikow92c. [647] Cezary Z. Janikow, H. Cai, and X. Luo. An approximate algorithm for estimating treatment lags from right censored data. Computers & Mathematics with Applications, 25(12):73­85, December 1993. * CA 5666 Vol. 37 No. 7/8 ga:Janikow93b. [648] H. M. KoЁhler. Adaptive genetic algorithm for the binary perceptron problem. Journal of Physics A Mathematical and General, 23(23):L1265­L1271, 1990. ga:Kohler90. [649] L. C. Freeman. Finding groups with a simple genetic algorithm. Journal of Mathematical Sociology, 17(4):227­241, 1993. Fogel/bib ga:LCFreeman93a.
86
Genetic algorithms in mathematics and statistics
[650] M. Mangel. Evolutionary optimization and neural network models of behaviour. Journal of Mathematical Biology, 28(3):237­256, 1990. Fogel/bib ga:Mangel90a. [651] S. Yu. Maslov. The mutation calculi. Journal of Soviet Mathematics, 10(?):495­517, ? 1978. [1086] ga:Maslov78a. [652] S. Yu. Maslov. Absorption relation on regular sets. Journal of Soviet Mathematics, 14(?):1468­1475, ? 1980. [1086] ga:Maslov80a. [653] W. E. Pinebrook. The evolution strategy applied to drag minimization on a body of revolution. Mathematical Modelling, 4(?):439­450, 1983. BackBib ga:Pinebrook83b. [654] R. S. Rosenberg. Simulation of genetic populations with biochemical properties: I. the model. Mathematical Biosciences, 7(?):223­257, 1970. ga:Rosenberg70a. [655] R. S. Rosenberg. Simulation of genetic populations with biochemical properties: II. selection of crossover probabilities. Mathematical Biosciences, 8(?):1­37, 1970. ga:Rosenberg70b. [656] Sankar K. Pal, Dinabandhu Bhandari, P. Harish, and Malay K. Kundu. Cellular neural networks, genetic algorithms and object extraction. Far East Journal of Mathematical Sciences, 1(2):139­155, December 1993. ga:SKPal93b. [657] Lin-Ming Jin and Shu-Park Chan. A genetic approach for network partitioning. International Journal Computers and Mathematics, 42(1-2):47­60, 1992. * CCA 8932/93 ga:SPChan92a. [658] P. A. Schrodt. Short-term prediction of international behavior using a Holland classifier. Mathematical and Computer Modelling, 12(4/5):589­600, 1989. ga:Schrodt89a. [659] Gunar E. Liepins and Michael D. Vose. Characterizing crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1):27­34, 1992. Fogel/bib ga:Vose92a. [660] Allen E. Nix and Michael D. Vose. Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence, 5(1):79­88, April 1992. ga:Vose92b. [661] Darrell Whitley. Deception, dominance and implicit parallelism in genetic search. Annals of Mathematics and Artificial Intelligence, 5(1):49­78, 1992. also as [1087] ga:Whitley92a. [662] Darrell Whitley, Rajarshi Das, and C. Crabb. Tracking primary hyperplane competitors during genetic search. Annals of Mathematics and Artificial Intelligence, 6(4):367­388, 1992. * CCA 12720 ga:Whitley92b. [663] K. Preis and A. Ziegler. Optimal design of electromagnetic devices with evolution strategies. COMPEL ­ The International Journal for Computations and Mathematics in Electrical and Electronic Engineering, 9(Supplement A):119­122, 1990. [1088] ga:Ziegler90a. [664] David Greenhalgh and Stephen Marshall. Convergence criteria for genetic algorithms. SIAM Journal on Computing, 30(1):269­282, 2000. ga00aDavidGreenhalgh. [665] Alex Brodsky and Nicholas Pippinger. Characterizations of 1-way quantum finite automata. SIAM Journal on Computing, 31(5):1456­1478, 2002. ga02aAlexBrodsky. [666] Christian M. Reidys and Peter F. Stadler. Combinatorial landscapes. SIAM Review, 44(1):3­54, January 2002. ga02aCMReidys. [667] Adriano Barenco, Andrґe Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello. Stabilisation of quantum computations by symmetrisation. SIAM Journal on Computing, ?(?):1541­ 1557, October 1997. ga97aABarenco. [668] Arnold Neumaier. Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review, 39(?):407­460, September 1997. (http://solon.cma.univie.ac.at/$\sim$\neum/papers.html# protein) ga97aNeumaier. [669] P. Freitas. Optimizing the rate decay of solutions of wave equation using genetic algorithms: a counterexample to the constant damping conjecture. SIAM Journal of Control Optim. (USA), 37(2):376­387, 1998. PA55988/99 ga98aFreitas. [670] Pedro Freitas. Optimizing the rate of decay of solutions of the wave equation using genetic algorithms: a counterexample to the constant damping conjecture. SIAM J. Control Optim., 37(2):376­387, ? 1999. www /MathRev2000b:35141 ga99aPFreitas. [671] John H. Holland. Genetic algorithms and the optimal allocations of trials. SIAM Journal on Computing, 2(2):88­105, June 1973. ga:Holland73a.
Bibliography
87
[672] El-Ghazali Talbi and Pierre Bessi`ere. A parallel genetic algorithm applied to the mapping problem. SIAM News, 24(4):12­27, July 1991. * ga:Talbi91a. [673] Li-Tien Ming and Peter J. Angeline. Evolutionary algorithm in group theory. In Kevin L. Priddy, Paul E. Keller, and Peter J. Angeline, editors, Applications and Science of Computational Intelligence V, volume SPIE-4739, pages 48­55, ?, March 2002. The International Society for Optical Engineering. * www/SPIE Web ga02aL-TWang. [674] Simon SchaЁfer and Stephan Schulz. Breeding theorem proving heuristics with genetic algorithms. In Proceedings of the Global Conference on Artificial Intelligence, GCAI 2015, pages 263­274, 2015. ga15aSimonSchafer http://www.easychair.org/publications/download/Breeding_Theorem_ Proving_Heuristics_with_Genetic_Algorithms. [675] Luca Benini. Genetic fitting: Evolutionary search of optimal approximations for discrete functions. In Koza [1058], page ? Koza ga95aBenini. [676] Charles L. Karr, B. Weck, Dґesirґe-Liuc Massart, and P. Vankeerberghen. Least median squares curve fitting using a genetic algorithm. Engineering Applications of Artificial Intelligence, 8(2):177­189, April 1995. * ga95aKarr. [677] Brigitta Lange. An evolution model for integration problems. In Pearson et al. [1059], pages 206­209. ga95aLange. [678] Kelly D. Crawford, Roger L. Wainwright, and Daniel J. Vasicek. Detecting multiple outliers in regression data using genetic algorithms. In Proceedings of the 1995 ACM Symposium on Applied Computing, pages 351­356, Nashville, TN, 26.-28. February 1995. ACM, New York, NY. EI M195251/95 ga95bCrawford. [679] M. Gulsen, A. E. Smith, and D. M. Tate. A genetic algorithm approach to curve fitting. Int. J. Prod. Res. (UK), 33(7):1911­1923, 1995. EEA64145/95 ga95bGulsen. [680] E. G. Rajan, P. Madhusudana Rao, V. V. N. Swamy, Khaja Mukarramuddin, Y. Anantha, and M. Murali Mohan. Genetic algorithms in the framework of Markov's constructive mathematical logic. In Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 223­228, Vancouver, BC (Canada), 22.-25. October 1995. IEEE, Piscataway, NJ. EI M035871/95 ga95bRajan. [681] Ivan Simonґik, Pavel Osmera, Miroslav Pokornyґ, and Drobisz Zbyszek. Using the genetic algorithms for fuzzy nonlinear regression. In Osmera [1077], pages 160­163. ga96aSimonik. [682] M. Kavian, R. G. McLenaghan, and K. O. Geddes. Application of genetic algorithms to the algebraic simplification of tensor polynomials. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 93­100, Maui, HI, 21.-23. July 1997. ACM, New York, NY. CCA72672/98 ga97aMKavian. [683] M. Xavian, R. G. McLenaghan, and K. O. Geddes. Application of genetic algorithms to the algebraic simplification of tensor polynomials. In Proceedings of the 1997 22nd International Symposium on Symbolic and Algebraic Computation, pages 93­100, Maui, HI, 21.-23. July 1997. ACM, New York, NY. EI M005534/98 ga97aMXavian. [684] Charles L. Karr, B. Weck, and L. Michael Freeman. Solutions to systems of nonlinear equations via a genetic algorithm. Engineering Applications of Artificial Intelligence, 11(3):369­375, 1998. CCA81741/98 ga98aCLKarr. [685] D. Dumitrescu and M. Oltean. An evolutionary algorithm for theorem proving in propositional logic. Studia Univ. Babes-Bolyai, Informatica, XLIV(2):87­98, 1999. ga99aDDumitrescu http://www.cs.ubbcluj. ro/~studia-i/1999-2/9-Dumitrescu.pdf. [686] Hugo de Garis. Block diagonalisation of very large binary matrices using the genetic algorithm. In ?, editor, Proceedings of the 5th International Symposium on Applied Stochastic Models and Data Analysis, volume ?, page ?, Granada (Spain), April 1991. ? de Garis ga:deGaris91g. [687] Umberto S. Costa, Anamaria M. Moreira, and David Dґeharbe. A cache-based parallel genetic algorithm for the BDD variable ordering problem. In Proceedings of the SBAC-PAD, pages ­, ? 2000. ga00aUSCosta http://pdf.aminer.org/000/212/529/genetic_algorithms_for_the_variable_ ordering_problem_of_binary_decision.pdf. [688] Umberto S. Costa, David Dґeharbe, and Anamaria M. Moreira. Variable ordering of BDDs with parallel genetic algorithms. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, pages 1181­1185, Las Vegas, NV, 26.-29. June 2000. C S R E A Press, 115 Avalon Dr, Athens, GA 30606 USA. Google ga00bUSCosta .
88
Genetic algorithms in mathematics and statistics
[689] William N. N. Hung and Xiaoyu Song. BDD variable ordering by scatter search. In Proceedings of the 2001 IEEE International Conference on Computer Design, ICCD 2001, pages 368­373. IEEE, Piscataway, NJ, ? 2001. ga01aWNNHung https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=955053. [690] William N. N. Hung, Xiaoyu Song, El Mostapha Aboulhamid, and Michael A. Driscoll. BDD minimization by scatter search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(8):974­979, August 2002. ga02aWNNHung http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=1020354&tag=1. [691] RuЁdiger Ebendt, GoЁrschwin Fey, and Rolf Drechsler. Advanced BDD optimisation. Springer, Berlin, 2005. DBLP ga05aRudigerEbendt . [692] Wolfgang Lenders and Christel Baier. Genetic algorithms for the variable ordering problem of binary decision diagrams. In A. H. Wright, M. D. Vose, K. A. DeJong, and L. M. Schmitt, editors, 8th International Workshop on Foundations of Genetic Algorithms, FOGA'05, volume 3469 of Lecture Notes in Computer Science, pages 1­20, Aizu Wakamatsu City (Japan), 5.-9. January 2005. Springer-Verlag, Heidelberg. ga05aWLenders http://www.springerlink.com/content/r1qfft1pbcblt97q/. [693] Ulrich KuЁhne and Nicole Drechsler. Finding compact BDDs using genetic programming. In Applications of Evolutionary Computing, volume 3907 of Lecture Notes in Computer Science, pages 308­319, ?, ? 2006. Springer-Verlag, Heidelberg. ga06aUlrichKuhne http://www.springerlink.com/content/ a357614523k55686/. [694] Sang-Young Cho, Minna Lee, and Yoojin Chung. A microcanonical optimization algorithm for BDD minimization problem. In Proceedings of the 20th International Conference on Industrial, Engineering, and Other Applications of Applied Intelligent Systems, IEA/AIE'07, pages 992­1001, ?, ? 2007. Springer. ACM ga07aSang-YoungCho http://dl.acm.org/citation.cfm?id=1770065. [695] Abdesslem Layeb and Djamel-Eddine Saidouni. Quantum differential evolution algorithms based on hill climbing for solving BDD ordering problem. In B. Iantovics, C. Enachescu, and F. Filip, editors, Proceedings of the Complexity in Artificial and Natural Systems, pages 207­210, Mures (Romania), 8.-10. November 2008. Editura Universitatii Petru Maior Targu-Mures, Str n Lorga NR 1, Tg Mures, 540088, Romania. ISI ga08aAbdesslemLayeb . [696] Hossein Moeinzadeh, Mehdi Mohammadi, Hossein Pazhoumand-dar, Arman Mehrbakhsh, Navid Kheibar, and Nasser Mozayani. Evolutionary-reduced ordered binary decision diagram. In Proceedings of the 2009 Third Asia International Conference on Modelling & Simulation, AMS'09, volume 1, pages 142­145, Bundang (Indonesia), 25.-29. May 2009. IEEE. ISI ga09aHosseinMoeinzadeh https://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5071973&contentType= Conference+Publications&searchField%3DSearch_All%26queryText%3DEvolutionary-Reduced+ Ordered+Binary+Decision+Diagram. [697] Anirban Dutta, K. L. Baishnab, and Saurabh Chaudhury. A new evolutionary algorithm based BDD optimization for area and power. International Journal of Electronic and Electrical Engineering, 3(3):147­ 160, ? 2010. ga10aAnirbanDutta http://irphouse.com/ijeee/ijeeev3n2_07.pdf. [698] Octav Brudaru, RuЁdiger Ebendt, and Iulian Furdu. Optimizing variable ordering of BDDs with double hybridized embryonic genetic algorithm. In Proceedings of the 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pages 167­173, ?, 23.-26. September 2010. IEEE, Piscataway, NJ. ga10aOBrudaru http://ieeexplore.ieee.org/xpls/abs_all.jsp? arnumber=5715283&tag=1. [699] Saurabh Chaudhury and Anirban Dutta. Genetic algorithm based variable ordering of BDDs for multi-level logic optimization with area-power trade-offs. In Proceedings of the 2010 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pages 627­630, ?, 12.-15. December 2010. IEEE, Piscataway, NJ. ga10aSChaudhury http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5724590. [700] Zhongliang Pan and Ling Chen. Minimization of binary decision diagrams by adaptive hierarchy genetic algorithm and its application in circuit test generation. In ?, editor, Advances in Mechanical and Electronic Engineering, volume 178 of Lecture Notes in Electronic Engineering, pages 175­180, ?, ? 2013. SpringerVerlag, Heidelberg. www /Springer ga13aZhongliangPan http://link.springer.com/chapter/10. 1007/978-3-642-31528-2_29. [701] A. E. A. Almaini and N. Zhuang. Using genetic algorithms for the variable ordering of Reed-Muller binary decision diagrams. Microelectronics Journal, 26(5):471­480, 1995. * CCA 81087/95 ga95aAlmaini. [702] A. E. A. Almaini, N. Zhuang, and F. Bourset. Minimisation of multioutput Reed-Muller binary decision diagrams using hybrid genetic algorithm. Electronics Letters, 31(20):1722­1723, 1995. ga95cAlmaini.
Bibliography
89
[703] Soon Won Jung and Gwi-Tae Park. A design of binary decision tree using genetic algorithms and its applications. J. Korea Inst. Telemat. Electron. (South Korean), 33B(6):102­110, 1996. (In Korean) EEA474/97 ga96aJung. [704] Rolf Drechsler, Bernd Becker, and Nicole GoЁckel. Genetic algorithm for variable ordering of OBDDs. IEE Proceedings-Computers and Digital Techniques, 143(6):364­368, 1996. CCA9053/97 ga96eDrechsler. [705] C. Okmen, Martin Keim, R. Krieger, and Bernd Becker. On optimizing bist-architecture by using OBDDbased approaches and genetic algorithms. In Proceedings of the 15th IEEE VLSI Test Symposium, pages 426­433, Monterey, CA, April 27.- May 1. 1997. IEEE Computer Society Press, Los Alamitos , CA. P75315 ga97aOkmen. [706] Petr Savickyґ and Ingo Wegener. Efficient algorithms for the transformation between different types of binary decision diagrams. Acta Informatica, 34(4):245­256, April 1997. (an earlier version published already in LNCS vol 880, 1994) ISI ga97aPSavicky http://www.springerlink.com/content/ 4ku2ch34ehebl66n/. [707] Nicole GЁockel and Rolf Drechsler. Influencing parameters of evolutionary algorithms for sequencing problems. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 575­580, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. EEA52979/97 ga97cGockel http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=592376. [708] P. Cichosz, J. J. Mulawka, and K. Skowronski. Genetics-based induction of minimum encoding decision trees. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 482­486, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). CCA68563/99 ga98aCichosz. [709] N. Zhuang and P. Y. K. Cheung. Logic synthesis for a fine-grain FPGA. IEE Proceedings - Computation Digital Technology, 145(1):47­51, January 1998. ga98aNZhuang. [710] Long Wangning and Min Yinghua. Variable ordering for TBDD based on genetic algorithm. Acta Electronica Sinica (China), 26(5):1­6, 1998. In Chinese CCA68900/98 ga98aWangning. [711] P. Cichosz, J. J. Mulawka, and K. Skowronski. Genetics-based induction of minimum encoding decision trees. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 482­486, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). CCA68563/99 ga98bCichosz. [712] A. Bystrov and A. E. A. Almaini. Testability and test compaction for decision diagram circuits. IEE Proceedings - Circuits, Devices and Systems, 146(4):153­158, August 1999. ga99aABystrov. [713] L. Bartlett and J. Andrews. Efficient basic event ordering schemes for fault tree analysis. Quality and Reliability Engineering International, 15(2):95­101, 1999. Levitin/bib ga99aBartlett. [714] W. Gunther and R. Drechsler. Minimization of BDDs using linear transformations based on evolutionary techniques. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, volume 1, pages 387­390, Orlando, FL, 30. may- 2. jun ? 1999. IEEE, Piscataway, NJ. CCA89617/99 ga99aGunther. [715] J. A. Gomez Pulido and J. M. Sanchez. Searching optimal ROBDDs using methodologies based on evolutionary algorithms. IEE Proceedings-Circuits Devices and Systems, 146(4):164­168, 1999. CCA89586/99 ga99aJAPulido. [716] N. Zhuang, M. V. Scotti, and P. Y. K. Cheung. PTM: Technology mapper for pass-transistor logic. IEE Proceedings-Computers and Digital Techniques, 146(1):13­19, January 1999. ga99aNZhuang http: //ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=757173. [717] Qiangfu Zhao and M. Shirasaka. A study on evolutionary design of binary decision trees. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1988­1993, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77068/99 ga99aQiangfuZhao. [718] P. van Remortel, T. Lenaerts, and B. Manderick. The evolution of ROBDDs: preliminary results and a first analysis. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 249­254, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. CCA80870/99 ga99aRemortel. [719] X. Y. Li and G. J. Chen. The variable ordering of binary decision diagram based on genetic algorithm. In Proceedings of the Fourth International Conference on Electronic Measurement & Instruments, volume 2, pages 920­924, Harbin (China), 18.-21. August 1999. Chinese Institute of Electronics. ISI ga99aXYLi .
90
Genetic algorithms in mathematics and statistics
[720] Rolf Drechsler, Bernd Becker, and Nicole GoЁckel. A genetic algorithm for variable ordering of OBDDs. In Proceedings of ACM/IEEE Workshop on Logic Synthesis, pages 55­64, ?, ? 1995. ? [?] ga95dDrechsler. [721] Rolf Drechsler, Nicole GoЁckel, and Bernd Becker. Learning heuristics for OBDD minimization by evolutionary algorithms. In Voigt et al. [1061], pages 730­739. ga96aDrechsler. [722] Vaclav Dvoraґk. Construction of optimum OBDDs using a parallel genetic approach. In Osmera [1077], pages 29­31. ga96aDvorak. [723] A. M. Raich and J. Ghaboussi. Evolving structural design solutions using an implicit redundant genetic algorithm. Structural and Multidisciplinary Optimization, 20(3):222­231, ? 2000. * www /Springer ga00aAMRaich. [724] Carlos A Coello Coello. Treating constraints as objectives for single-objective evolutionary optimization. Engineering Optimization, 32(3):275­308, ? 2000. ga00aCACoelloCoello. [725] J. Pieczara. Optimization of cooling tower shells using a simple genetic algorithm. Structural and Multidisciplinary Optimization, 19(4):311­316, ? 2000. * www /Springer ga00aJPieczara. [726] B. Liu, Raphael T. Haftka, and Mehmet A. AkguЁn. Two-level composite wing structural optimization using response surfaces. Structural and Multidisciplinary Optimization, 20(2):87­96, ? 2000. * www /Springer ga00bBLiu. [727] B. Kovacs, F. J. Szabo, and Gy. Szota. A generalized shape optimization procedure for the solution of linear partial differential equations with application to multidisciplinary optimization. Structural and Multidisciplinary Optimization, 21(4):327­331, ? 2001. * www /Springer ga01aBKovacs. [728] G. E. Plassman and J. Sobieszczanski-Sobieski. Experience with a genetic algorithm implemented on a multiprocessor computer. Structural and Multidisciplinary Optimization, 22(2):102­115, ? 2001. * www /Springer ga01aGEPlassman. [729] Joong-Suk Yoo and Prabhat Hajela. Fuzzy multicriterion design using immune network simulation. Structural and Multidisciplinary Optimization, 22(3):188­197, ? 2001. * www /Springer ga01aJYoo. [730] M. S. Hayalioglu. Optimum load and resistance factor design of steel space frames using genetic algorithm. Structural and Multidisciplinary Optimization, 21(4):292­299, ? 2001. * www /Springer ga01aMSHayalioglu. [731] S. Y. Woon, O. M. Querin, and G. P. Steven. Structural application of a shape optimization method based on a genetic algorithm. Structural and Multidisciplinary Optimization, 22(1):57­64, ? 2001. * www /Springer ga01aSYWoon. [732] W. Gutkowski, Z. Iwanow, and J. Bauer. Controlled mutation in evolutionary structural optimization. Structural and Multidisciplinary Optimization, 21(5):355­360, ? 2001. * www /Springer ga01aWGutkowski. [733] B. Forouraghi. Worst-case tolerance design and quality assurance via genetic algorithms. Journal of Optimization Theory and Applications, 113(2):251­268, May 2002. ga02aBForouraghi. [734] H. Kawamura, H. Ohmori, and N. Kito. Truss topology optimization by a modified genetic algorithm. Structural and Multidisciplinary Optimization, 23(6):467­473, ? 2002. * www /Springer ga02aHKawamura. [735] L. Giraud-Moreau and P. Lafon. A comparison of evolutionary algorithms for mechanical design components. Engineering Optimization, 34(?):307­322, ? 2002. ga02aLGiraud-Moreau. [736] M. S. Hayalioglu. Optimum load and resistance factor design of steel space frames using genetic algorithm. Structural and Multidisciplinary Optimization, 23(5):404, ? 2002. * www /Springer ga02aMSHayalioglu. [737] P. Auvinen, M. M. MaЁkelaЁ, and J. MaЁkinen. Structural optimization of forest machines with hybridized nonsmooth and global methods. Structural and Multidisciplinary Optimization, 23(5):382­389, ? 2002. * www /Springer ga02aPAuvinen. [738] P. C. Fourie and A. A. Groenwold. The partial swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization, 23(4):259­267, ? 2002. * www /Springer ga02aPCFourie. [739] Hui-Yuan Fan and Jouni Lampinen. A trigonometric mutation operation to differential evolution. Journal of Global Optimization, 27(?):105­129, ? 2003. ga03aHui-YuanFan. [740] N. B. Hui and D. K. Pratihar. Camera calibration using a genetic algorithm. Engineering Optimization, 40(12):1151­1169, December 2008. ISI ga08aNBHui . [741] Ari Saario and A. Oksanen. Computational fluid dynamics and interactive multiobjective optimization in the development of low-emission industrial boilers. Engineering Optimization, 40(9):­, ? 2008. * TUT ga08bAriSaario http://www.tandfonline.com/doi/abs/10.1080/03052150802056196.
Bibliography
91
[742] J. Manuel Herrero, S. Garcґia-Nieto, Xavier Blasco, Vicent Romero-Garcґia, J. Vicente Saґnchez-Pґerez, and L. M. Garcia-Raffi. Optimization of sonic crystal attenuation properties by ev-maga multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2):203­215, August 2009. ga09aJMHerrero. [743] Chin Wei Bong, Hong Yoong Lam, Ahamad Tajudin Khader, and Hamzah Kamarulzaman. Adaptive multiobjective archive-based hybrid scatter search for segmentation in lung computed tomography imaging. Engineering Optimization, 44(3):327­350, ? 2012. * ISI ga12aChinWeiBong http://www.tandfonline. com/doi/abs/10.1080/0305215X.2011.639369. [744] Kalyanmoy Deb and Soumil Srivastava. A genetic algorithm based augmented Lagrangian method for constrained optimization. Computational Optimization and Applications, 53(3):869­902, December 2012. ISI ga12aKalyanmoyDeb . [745] Kalyanmoy Deb and Rituparna Datta. Hybrid evolutionary multi-objective optimization and analysis of machining. Engineering Optimization, 44(6):1248­1267, 2012. ISI ga12bKalyanmoyDeb . [746] Anoop K. Dhingra and B. H. Lee. Optimal placement of actuators in actively controlled structures. Engineering Optimization, 23(2):99­118, 1994. * EI M098071/96 ga94bDhingra. [747] J. L. Marcelin and P. Trompette. Optimal structural damping of skis using a genetic algorithm. Structural Optimization Research Journal, 10:67­70, 1995. ga95cMarcelin. [748] B. H. Gwee and Meng-Hiot Lim. Polyominoes tiling by a genetic algorithm. Computational Optimization and Applications, 6(3):273­291, 1996. CCA94497/96 ga96aGwee. [749] J. Haslinger and D. Jedelsky. Genetic algorithms and fictitious domain based approaches in shape optimization. Research Journal on Structural Optimization, 12:257­264, 1996. ga96aHaslinger. [750] K. Iwamura and Baoding Liu. A genetic algorithm for chance constrained programming. J. Inf. Optimization Sci. (India), 17(2):409­422, 1996. CCA301/97 ga96aIwamura. [751] K. L. Mak and Y. S. Wong. A genetic approach to Kanban assignment problems. J. Inf. Optimization Sci. (India), 18(3):359­381, 1997. CCA26594/97 ga97aKLMak. [752] Rainer Storn and Kenneth Price. Differential evolution a simple and efficient heuristic for global optimisation over continuous spaces. Journal of Global Optimization, 11(?):341­359, ? 1997. [1089] ga97aRStorn. [753] G. Ucoluk and H. Toroslu. A genetic algorithm approach for verification of the syllable-based text compression technique. J. Inf. Optimization Sci. (India), 23(5):365­372, 1997. CCA94914/97 ga97bGUcoluk. [754] N. P. Belfiore and A. Esposito. Theoretical and experimental study of crossover operators of genetic algorithms. Journal of Optimization Theory and Applications, 99(2):271­302, November 1998. ga98aBelfiore. [755] R. Yang and I. Douglas. Simple genetic algorithm with local tuning: efficient global optimization technique. Journal of Optimization Theory and Applications, 98(2):449­465, August 1998. ga98aRYang. [756] Joong-Suk Yoo and Prabhat Hajela. Immune network simulations in multicriterion design. Structural Optimization, 18(2/3):85­94, ? 1999. * www /Springer ga99aJYoo. [757] Carlos A. Coello Coello and Alan D. Christiansen. MOSES: A multiobjective optimization tool for engineering design. Engineering Optimization, 31(3):?, 1999. (In Press; http://www.lania.mx/~ccoello/ papers.html) CoelloCoello ga99bCoelloCoello. [758] Carlos A. Coello Coello. Treating constraints as objectives for single-objective evolutionary optimization. Engineering Optimization, 32, 1999. (Accepted for publication; http://www.lania.mx/~ccoello/papers. html) CoelloCoello ga99dCoelloCoello. [759] Q. Y. Duan, V. K. Gupta, and S. Sorooshian. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3):501­521, March 1993. ga:Duan93a. [760] Claas de Groot, Diethelm WuЁrtz, and Karl Heinz Hoffmann. Low autocorrelation binary sequences: Exact enumeration and optimization by evolutionary strategies. Optimization (UK), 23(4):369­384, 1993. also as [1090] ga:Groot93a. [761] Chyi-Yeu Lin and Prabhat Hajela. Genetic algorithms in optimization problems with discrete and integer design variables. Engineering Optimization, 19(4):i309­327, June 1992. ga:Hajela92b. [762] Prabhat Hajela and Chyi-Yeu Lin. Genetic algorithms in optimization problems with discrete and integer design variables. Engineering Optimization, 19(4):i309­327, ? 1992. ga:Hajela92c. [763] Prabhat Hajela and Chyi-Yeu Lin. Genetic search strategies in multicriterion optimal design. J. Structural Optimization, 4(?):99­107, June 1992. [1091] ga:Hajela92d.
92
Genetic algorithms in mathematics and statistics
[764] Scott Michael Le Grand and K. M. Merz, Jr. The application of genetic algorithms to the minimization of potential energy functions. Journal of Global Optimization, 3(?):49­66, 1993. David E. Clark/bib [?][1092] ga:LeGrand93a. [765] G. A. Walters and T. K. Lohbeck. Optimal layout of tree networks using genetic algorithms. Engineering Optimization, 22(?):27­48, ? 1993. News/Savic ga:Lohbeck93a. [766] Prasanna Jog, Jung Y. Suh, and Dirk Van Gucht. Parallel genetic algorithms applied to the traveling salesman problem. SIAM Journal on Optimization, 1(4):515­529, ? 1991. Levine93a ga:Suh91a. [767] M. Walk and J. Niklaus. Some remarks on computer-aided design of optical lens systems. Journal of Optimization Theory and Applications, 59(2):173­181, 1988. BackBib ga:Walk88a. [768] Peng Tian and Zihou Yang. An improved simulated annealing algorithm with genetic characteristics and the traveling salesman problem. J. Inf. Optimization Sci. (India), 14(3):241­255, September 1993. * CCA 9369/94 ga:ZYang93a. [769] J. Iginizio. Illusions of optimality. Engineering Optimization, 6(?):749­761, ? 1999. op:JIginizio99a. [770] Jouni Tiilikainen, V. Bosund, M. Mattila, T. Hakkarainen, J. Sormunen, and H. Lipsanen. Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density. Journal of Physics D-Applied Physics, 40(14):4259­4263, 21. July 2007. GA07bJouniTiilikainen. [771] Jouni Tiilikainen, V. Bosund, J.-M. Tilli, J. Sormunen, M. Mattila, T. Hakkarainen, and H. Lipsanen. Genetic algorithm using independent component analysis in x-ray reflectivity curve fitting of periodic layer structures. Journal of Physics D-Applied Physics, 40(19):6000­6004, 7. October 2007. GA07cJouniTiilikainen. [772] J. deBuse and Vic J. Rayward-Smith. Constrained multi-dimensional curve fitting using genetic algorithms. In ?, editor, Proceedings of the Conference on Adaptive Computing in Engineering Design and Control, page ?, Plymouth (UK), 21.-22. September 1994. ? Rayward-Smith ga94adeBuse. [773] S. Collins, R. Srikanth, R. George, and N. Warsi. A GA driven neural net for curve fitting. In Proceedings of the First International Conference, volume 1, pages 116­118, Atlanta, GA, 28.-31. May 1995. Dynamic Publishers 1995, Atlanta, GA. CCA95397/95 ga95bCollins. [774] K. Messa and M. Lybanon. A new technique for curve fitting. Technical Report Naval Oceanographic and Atmospheric Research Report JA 321:021:19, NAVY, 1991. [1093] ga:Messa91a. [775] Uwe Depczynski, V. J. Frost, and K. Molt. Genetic algorithms applied to the selection of factors in principal component regression. Analytica Chimica Acta, 420(2):217­227, 14. September 2000. ga00aDepczynski. [776] M. J. Embrechts, d. Devogelaere, and M. Rijkaert. Supervised scaled regression clustering: an alternative to neural network. In S.-I. Amari, C. L. Giles, M. Gory, and V. Piuri, editors, Proceedings of thr IEEEINNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000, volume 6, pages 571­576, Como, Italy, 24.-27.July 2000. IEEE, Piscataway, NJ. * www/IEEE ga00aMJEmbrechts. [777] Sergei Izrailev and Dimitris Agrafiotis. A novel method for building regression tree models for QSAR based on artificial ant colony systems. Journal of Chemical Information and Computer Sciences, 41(1):176­180, January/February 2001. ga01aIzrailev. [778] Nguyen Xuan Hoai. Solving the symbolic regression problem with tree adjoining grammar guided genetic programming: The preliminary result. In ?, editor, Proceedings of the 5th Australasia-Japan Workshop in Evolutionary and Intelligent Systems, pages 52­61, ?, ? 2001. ? [1094] ga01aNXHoai. [779] Yee Leung, Jiang-Hong Ma, and Wen-Xiu Zhang. A new method for mining regression classes in large data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(1):5­21, January 2001. * www /IEEE ga01aYeeLeung. [780] Brad Dolin, Forrst H. Bennett, III, and Eleanor G. Rieffel. Co-evolving an effective fitness sample: experiments in symbolic regression and distributed robot control. In Proceedings of the 1999 ACM Symposium on Applied Computing, pages 553­559, Madrid (Spain), ? 2002. ACM, New York. ACM /www ga02aBDolin. [781] Nguyen Xuan Hoai, R. I. McKay, and D. Essam. Solving the symbolic regression problem with tree adjoining grammar guided genetic programming. Australian Journal of Intelligent Information Processing Systems, 7(3):114­121, 2002. [1094] ga02aNXHoai. [782] Colin G. Johnson. Artificial immune system programming for symbolic regression. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 345­353, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aColinGJohnson.
Bibliography
93
[783] Grґegory Paris, Denis Robillard, and Cyril Fonlupt. Genetic programming with boosting for ambiguities in regression problems. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 183­193, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aGParis. [784] Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 70­82, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aMKeijzer. [785] Roberto Todeschini, Viviana Consonni, Andrea Mauri, and Manuela Pavan. Chapter 5. MobyDigs: Software for regression and classification models by genetic algorithms. In Riccardo Leardi, editor, Natureinspired Methods in Chemometrics and Artificial Neural Networks, pages 141­168. Elsevier, Amsterdam, 2003. TKKpaa ga03aRTodeschini. [786] J. Tolvi. Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 8(8):527­533, August 2004. * ACM ga04aJTolvi http://dl.acm.org/citation.cfm?id=1013628. [787] B. Ustun, W. J. Melssen, M. Oudenhuijzen, and L. M. C. Buydens. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 544(1-2):292­305, 15. July 2005. ga05aBUstun. [788] A. Durand, O. Devos, C. Ruckebusch, and J. P. Huvenne. Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton-viscose textiles. Analytica Chimica Acta, ?(?):?, ? 2007. (in press) ga07aADurand. [789] Olivier Gayou, Shiva K. Das, Su-Min Zhou, Lawrence B. Marks, David S. Parda, and Moyed Miften. A genetic algorithm for variable selection in logistic regression analysis of radiotherapy treatment outcomes. Med Phys, 35(12):5426­5433, December 2008. ga08aOlivierGayou http://www.ncbi.nlm.nih.gov/ pubmed/19175102. [790] Georgina McLeod, Kirsty Chelland, Henri Tapp, E. Katherine Kemsley, Reginald H. Wilson, Graham Poulter, David Coombs, and Christopher J. Hewitt. A comparison of variate pre-selection methods for use in partial least squares regression: A case study on NIR spectroscopy applied to monitoring beer fermentation. Journal of Food Engineering, 90(2):300­307, ? 2009. Google ga09aGeorginaMcLeod http: //www.elsevier.com/wps/find/journaldescription.cws_home/405862/description#description. [791] Yongxin Li, Yuanqian Li, Bo Zheng, Lingli Qu, and Can Li. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophosesis with genetic algorithm-support vector regression optimization. Analytica Chimica Acta, 643(?):100­107, ? 2009. ga09aYongxinLi. [792] K. Y. Chan, C. K. Kwong, and Terence C. Fogarty. Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers. Information Sciences: An International Journal, 180(4):506­518, February 2010. ACM ga10aKYChan . [793] Pietari Pulkkinen and Hannu Koivisto. A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Transactions on Fuzzy Systems, 18(1):161­177, February 2010. ga10aPietariPulkkinen. [794] Salena Akter and Mozammel H. A. Khan. Multiple-case outlier detection in multiple linear regression model using quantum-inspired evolutionary algorithm. Journal of Computers, 5(12):1779­1788, December 2010. ga10aSalenaAkter https://www.academypublisher.com/~academz3/ojs/index.php/jcp/ article/view/051217791788. [795] Yujung Kang, Jungsul Lee, Kihwan Kwon, and Chulhee Choi. Assessment of peripheral tissue perfusion by optical dynamic fluorescence imaging and nonlinear regression modeling. In Nikoforos Kollias et al, editor, Photonic Therapeutics and Diagnostics VI, volume SPIE-7548, pages 7548L­75483L­13­, ?, ? 2010. The International Society for Optical Engineering, Bellingham, WA. * SPIE ga10aYujungKang http: //adsabs.harvard.edu/abs/2010SPIE.7548E..70K. [796] Bahram Hemmateenejad, Mojtaba Shamsipur, Vali Zare-Shahabadi, and Morteza Akhond. Building optimal regression tree by ant colony system-genetic algorithm: application to modeling of melting points. Analytica Chimica Acta, 704(1-2):57­62, October 2011. PubMed ga11aBahramHemmateenejad http://www.ncbi.nlm.nih.gov/pubmed/21907021. [797] Jianwen Fang and David Tai. Evaluation of mutual information, genetic algorithm and SVR for feature selection in QSAR regression. Current Drug Discovery Technologies, 8(2):107­111, June 2011. PubMed ga11aJianwenFang http://www.ncbi.nlm.nih.gov/pubmed/21513488.
94
Genetic algorithms in mathematics and statistics
[798] Mingfeng Jiang, Lingyan Zhu, Yaming Wang, Ling Xia, Guofa Shou, Feng Liu, and Stuart Crozier. Application of kernel principal component analysis and support vector regression for reconstruction of cardiac transmembrane potentials. Physics in Medicine and Biology, 56(6):1727­1742, March 2011. PubMed ga11aMingfengJiang http://www.ncbi.nlm.nih.gov/pubmed/21346274. [799] Olivier Devos and Ludovic Duponchel. Parallel genetic algorithm co-optimization of spectral preprocessing and wavelength selection for PLS regression. Chemometrics and Intelligent Laboratory Systems, 107(1):50­58, May 2011. ga11aOlivierDevos http://www.sciencedirect.com/science/article/pii/ S0169743911000116. [800] Sisir Nandi and Manish C. Bagchi. Activity prediction of some nontested anticancer compounds using GAbased PLS regression models. Chemical Biology & Drug Design, 78(4):587­595, October 2011. PubMed ga11aSisirNandi http://www.ncbi.nlm.nih.gov/pubmed/21752199. [801] Steve S. H. Ling and Hung T. Nguyen. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes. IEEE Transactions on Information Technology in Biomedicine, 15(2):308­315, March 2011. PubMed ga11aSteveSHLing http://www.ncbi.nlm. nih.gov/pubmed/21349796. [802] Tahereh Asadollahi, Shayessteh Dadfarnia, Ali Mohammad Haji Shabani, Jahan B. Ghasemi, and Maryam Sarkhosh. QSAR models for CXCR2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the PLS linear regression method and design of the new compounds using in silico virtual screening. Molecules, 16(3):1928­1955, 2011. PubMed ga11aTaherehAsadollahi http://www.ncbi.nlm.nih.gov/pubmed/21358586. [803] Ai-Guo Ouyang, Xiao-Qiang Xie, Yan-Rui Zhou, and Yan-De Liu. [partial least squares regression variable screening studies on apple soluble solids NIR spectral detection]. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 32(10):2680­2684, October 2012. PubMed ga12aAi-GuoOuyang http://www.ncbi.nlm. nih.gov/pubmed/23285864. [804] Ibrahim A. Naguib and Hany W. Darwish. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: a comparative study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 86:515­526, February 2012. PubMed ga12aIbrahimANaguib http://www.ncbi.nlm.nih.gov/pubmed/ 22137012. [805] Julio Cesar L. Alves, Claudete B. Henriques, and Ronei J. Poppi. Determination of diesel quality parameters using support vector regression and near infrared spectroscopy for an in-line blending optimizer system. Fuel, 97(?):710­717, July 2012. ga12aJCLAlves http://www.sciencedirect.com/science/ article/pii/S0016236112002256. [806] Jae Joon Ahn, Young Min Kim, Keunje Yoo, Joonhong Park, and Kyong Joo Oh. Using GA-Ridge regression to select hydro-geological parameters influencing groundWater Pollution vulnerability. Environmental Monitoring and Assessment, 184(11):6637­6645, November 2012. PubMed ga12aJaeJoonAhn http://www.ncbi.nlm.nih.gov/pubmed/22124584. [807] M. Asadollahi-Baboli. Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems. SAR and QSAR in Environmental Research, 23(5-6):505­520, July 2012. PubMed ga12aMAsadollahi-Baboli http://www.ncbi.nlm.nih.gov/pubmed/22452268. [808] Yingqiang Ding and Dan Peng. Quantitative analysis of near-infrared spectra by wavelet-based interferences removal and least squares support vector regression. Journal of Computers, 7(4):880­889, April 2012. ga12aYingqiangDing http://ojs.academypublisher.com/index.php/jcp/article/view/ jcp0704880889. [809] Akhil Kadiyala, Devinder Kaur, and Ashok Kumar. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus. Journal of the Air & Waste Management Association, 63(2):205­218, February 2013. PubMed ga13aAkhilKadiyala http://www.ncbi.nlm.nih.gov/pubmed/23472304. [810] Jun Yan, Jian-Hua Huang, Min He, Hong-Bing Lu, Rui Yang, Bo Kong, Qing-Song Xu, and Yi-Zeng Liang. Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine. Journal of Separation Science, 36(15):2464­ 2471, August 2013. PubMed ga13aJunYan http://www.ncbi.nlm.nih.gov/pubmed/23720406. [811] Koen Van der Borght, Ann Verheyen, Maxim Feyaerts, Liesbeth Van Wesenbeeck, Yvan Verlinden, Elke Van Craenenbroeck, and Herman van Vlijmen. Quantitative prediction of integrase inhibitor resistance
Bibliography
95
from genotype through consensus linear regression modeling. Virology Journal, 10:8, 2013. PubMed ga13aKoenVanderBorght http://www.ncbi.nlm.nih.gov/pubmed/23282253. [812] P. J. Garcґia Nieto, J. R. Alonso Fernґandez, F. J. de Cos Juez, F. Saґnchez Lasheras, and C. Dґiaz Mun~iz. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environmental Research, 122:1­10, April 2013. PubMed ga13aPJGarciNieto http://www.ncbi.nlm.nih.gov/pubmed/23375084. [813] Yao-Ze Feng and Da-Wen Sun. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of pseudomonas loads in chicken fillets. Talanta, 109:74­83, May 2013. PubMed ga13aYao-ZeFeng http://www.ncbi.nlm. nih.gov/pubmed/23618142. [814] Zhang-Quan Shen, Bi-Hui Lu, Ying-Jie Shan, and Hong-Wei Xu. [study on soil carbon estimation by onthe-go near-infrared spectra and partial least squares regression with variable selection]. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 33(7):1775­1780, July 2013. (in Chinese) PubMed ga13aZhang-QuanShen http://www.ncbi.nlm.nih.gov/pubmed/24059173. [815] Dimitris Sykas and Vassilia Karathanassi. An automatic method for producing robust regression models from hyperspectral data using multiple simple genetic algorithms. In Diafantos G. Hadjimitsis, Kyriacos Themistocleous, Silas Michaelides, and Giorgos Papadavid, editors, Proceedings of the Third International Conference on Remote Sensing and Geoinformation of Environment (RSCy2015), volume SPIE-9535, pages ­, Paphos (Cyprus), 16.-19. March 2015. The International Society for Optical Engineering, Bellingham, WA. ga15aDimitrisSykas https://www.researchgate.net/publication/273760410_An_automatic_method_for_producing_ robust_regression_models_from_hyperspectral_data_using_multiple_simple_genetic_algorithms. [816] Gary S. Wasserman and Agus Sudjianto. All subsets regression using a genetic search algorithm. Computers & Industrial Engineering, 27(1-4):489­492, September 1994. (Proceedings of the 16th Annual Conference on Computers and Industrial Engineering, Ashikaga (Japan), 7.-9. Mar.) * CCA 11748/95 EI M085332/95 ga94aWasserman. [817] B. M. Wise, B. R. Holt, N. B. Gallagher, and S. Lee. A comparison of neural networks, non-linear biased regression and a genetic algorithm for dynamic model identification. Chemometrics and Intelligent Laboratory Systems, 30(?):81­89, ? 1995. David E. Clark/bib ga95aBMWise. [818] Ben McKay, Mark J. Willis, and Geoffrey W. Barton. Using a tree structured genetic algorithm to perform symbolic regression. In IEE/IEEE Sheffield '95 [1076], pages 487­492. conf.prog ga95aMcKay. [819] P. Vankeerberghen, J. Smeyers-Verbeke, Riccardo Leardi, Charles L. Karr, and Dґesirґe-Liuc Massart. Robust regression and outlier detection for non-linear models using genetic algorithms. Chemometrics and Intelligent Laboratory Systems, 28(1):73­87, April 1995. * ga95aVenkeerberghen. [820] Arjun S. Bangalore, Ronald E. Shaffer, Gary W. Small, and Mark A. Arnold. Genetic algorithm-based method for selecting wavelenghts and model size for use with partial least-squares regression: Application to near-infrared spectroscopy. Analytical Chemistry, 68(23):4200­4212, 1. December 1996. ga96aASBangalore. [821] B. C. Wallet, D. J. Marchette, J. L. Solka, and E. J. Wegman. A genetic algorithm for best subset selection in linear regression. In Proceedings of the 28th Symposium on the Interface, pages 545­550, Sydney (Australia), 8.-12. July 1996. Interface Foundation North America, Fairfax Station, VA (USA). EEA92572/97 ga96aBCWallet. [822] David Broadhurst, Royston Goodacre, Alun Jones, Jem J. Rowland, and Douglas B. Kell. Genetic algorithms as a method for variable selection in multiple linear-regression and partial least-squares regression with applications to pyrolysis mass-spectrometry. Analytica Chimica Acta, 348(1-3):71­86, 1996. ga96aBroadhurst. [823] Antonio Delgado, Luis Puigjaner, K. Sanjeevan, and I. Sole. Hybrid system: neural networks and genetic algorithms applied in nonlinear regression and time series forecasting. In ?, editor, Proceedings of the 12th Sympisium, Computational Statistics, volume ?, pages 217­222, Barcelona, Spain, 26.-30. August 1996. Physica-Verlag, Heidelberg, Germany. EEA427/97 ga96aDelgado. [824] J. V. Hansen and R. D. Meservy. Learning experiments with genetic optimization of a generalized regression neural network. Decis Support Syst (Netherlands), 18(3-4):317­325, 1996. CCA94910/96 ga96aHansen. [825] Hugo Kubinyi. Evolutionary variable selection in regression and PLS analyses. Journal of Chemometrics, 10(?):119­133, ? 1996. David E. Clark/bib ga96aKubinyi.
96
Genetic algorithms in mathematics and statistics
[826] Ronald E. Shaffer, Gary W. Small, and Mark A. Arnold. Genetic algorithm-based protocol for coupling digital filtering and partial least-squares regression: Application to the near-infrared analysis of glucose in biological matrices. Analytical Chemistry, 68(15):2663­2675, 1. August 1996. ga96aREShaffer. [827] Agus Sudjianto, Gary S. Wasserman, and H. Sudarbo. Genetic subsets regression. Computers & Industrial Engineering, 30(4):839­850, ? 1996. (Proceedings of the 16th Annual Conference on Computers and Industrial Engineering, Ashikaga (Japan), 7.-9. Mar. 1994) P69502 ga96aSudjianto. [828] Jennifer L. Davidson, Xia Hua, and Dan Ashlock. Comparison of genetic algorithm, regression, and Newton's method for parameter estimation of texture models. In Proceedings of the 1996 IEEE Southwest Symposium on Image Analysis and Interpretation, pages 201­206, San Antonio, TX, 8.-9. April 1996. IEEE, Piscataway, NJ. EI M110376/96 ga96bDavidson. [829] Wolfgang Banzhaf, Peter Nordin, and Markus Olmer. Generating adaptive behavior for a real robot using function regression within genetic programming. In Koza et al. [1081], page ? conf.prog ga97aBanzhaf. [830] Ghinwa Baradhi and Mansour Nashat. Comparative study of five regression testing algorithms. In Proceedings of the 1997 Australian Software Engineering Conference, pages 174­182, Sydney, NSW (Australia), 29. sep- 2. oct ? 1997. IEEE Computer Society Press, Los Alamitos, CA. EI M017850/98 ga97aBaradhi. [831] Miles F. Jefferson, Neil Pendleton, Sam B. Lucas, and Michael A. Horan. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer Letters, 79(7):1338­1342, 1997. BAb129197 ga97aJefferso. [832] Nashat Mansour and Khaled El-Fakih. Natural optimization algorithms for optimal regression testing. In Proceedings of the 1997 21st Annual International Conputer Software & Applications Conference, pages 511­514, Washington, DC, 13.-15. August 1997. IEEE, Los Alamitos, CA. EI M002479/98 ga97aMansour. [833] R. Guchardi, Paulo A. da Costa Filho, Ronei J. Poppi, and C. Pasquini. Determination of ethanol and methyl tert-butyl ether (MTBE) in gasoline by NIR-AOTF-based spectroscopy and multiple linearregression with variables selected by genetic algorithm. Journal of Near Infrared Spectroscopy, 6:333­340, 1997. P84799 ga97aRGuchardi. [834] S. Rajasekaran and G. A. Vijayalakshmi Pai. Genetic algorithm based multilayer feedforward network as non linear regression correlator. In Osmera [1063], pages 123­128. ga97aRajasekaran. [835] J. Trigueros. A nonparametric approach to pricing and hedging derivative securities via genetic regression. In Proceedings of the IEEE/IAFE Computational Intelligence in Finance Engineering Conference [1095], page ? conf.prog ga97aTrigueros. [836] V. J. Frost and K. Molt. Use of a genetic algorithm for factor selection in principal component regression. Journal of Near Infrared Spectroscopy, 6:A185­A190, 1997. P84799 ga97aVJFrost. [837] Timothy Masters and Walker Land. A new training algorithm for the general regression neural network. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages 1990­1994, Orlando, FL, 12.-15. October 1997. IEEE, Piscataway, NJ. A98-23872 ga97bMasters. [838] J. Pavlickova. An advanced methods of regression tree construction in the automatic controller modeling. In B. Katalinic, editor, Proceedings of the 8th International DAAAM Symposium, pages 259­260, Dubrovnik, Croatia, 23.-25. October 1997. DAAAM International, Vienna, TU Wien. ga97bPavlickova. [839] A. Salhi, H. Glaser, and D. De Roure. Parallel implementation of a genetic-programming based tool for symbolic regression. Information Processing Letters, 66(6):299­307, 1998. CCA78367/98 ga98aASalhi. [840] T. Feuring, J. J. Buckley, and Y. Hayashi. Fuzzy regression: an evolutionary algorithm approach. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, volume 1, pages 704­708, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. CCA83976/98 ga98aFeuring. [841] D. Ozdemir, M. Mosley, and R. Williams. Effect of wavelength drift on single- and multi-instrument calibration using genetic regression. Appl. Spectrosc. (USA), 52(9):1203­1209, 1998. PA26149/99 ga98aOzdemir. [842] Riccardo Leardi and Lupiaґn~ez A. Gonzaґlez. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometrics and Intelligent Laboratory Systems, 41(2):195­207, 1998. CCA78000/98 ga98aRLeardi. [843] U. Depczynski, V. J. Frost, and K. Molt. Genetic algorithms applied to the selection of factors in principal component regression. Analytica Chimica Acta, 420(2):217­228, 15.-18.September 1998. P90348 ga98aUDepczynski. [844] William E. Dougherty and R. D. (Shawn) Blanton. Using regression analysis for GA-based ATPG parameter optimization. In Proceedings of the 1998 IEEE International Conference on Computer Design (ICCD), volume ?, page ?, Austin, TX, ? 1998. IEEE, Piscataway, NJ. ga98aWEDougherty.
Bibliography
97
[845] J. J. Buckley, T. Feuring, and Y. Hayashi. Multivariate non-linear fuzzy regression: an evolutionary algorithm approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. (Singapore), 7(2):83­98, 1999. CCA94192/99 ga99aBuckley. [846] Uwe Depczynski, Kurt Jetter, K. Molt, and A. NiemЁoller. Quantitative analysis of near infrared spectra by wavelet coefficient regression using a genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 47(2):179­187, ? 1999. ga99aDepczynski. [847] M. A. Kaboudan. Genetic evolution of regression models for business and economic forecasting. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1260­1267, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA83836/99 ga99aKaboudan. [848] Martin Kreutz, Anja M. Reimetz, Bernhard Sendhoff, Claus Weihs, and Werner von Seelen. Structure optimisation of density estimation models applied to regression problems with dynamics noise. In D. Heckerman and J. Whittaker, editors, Artificial Intelligence and Statistics 99: Proceedings of the 7th International Workshop, volume ?, pages 237­242, San Mateo, CA, January 1999. Morgan Kauffman Publishers. ga99aMKreutz. [849] W. G. Macready and B. S. Levitan. Learning landscapes: regression on discrete spaces. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 687­694, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77229/99 ga99aMacready. [850] S. Vinterbo and L. Ohno-Machado. A genetic algorithm to select variables in logistic regression: example in the domain of myocardial infarction. Proc. AMIA Symp, ?(?):984­988, ? 1999. * PubMed10566508 ga99aSVinterbo. [851] X. Hong and S. A. Billings. Parameter estimation based on stacked regression and evolutionary algorithms. IEE Proc., Control Theory Appl. (UK), 146(5):406­414, 1999. CCA94413/99 ga99aXHong. [852] J. R. Rudd. Applying genetic algorithms to curvilinear regression problems. In ?, editor, Proceedings of the 31st Annual Southeast Conference, pages 275­283, Birmingham, AL, 14.-16. April 1993. ACM, New York. * CCA 24785/94 ga:Rudd93a. [853] Antti Autere. Optimointi [Optimization and GA]. In Alander [1083], pages 105­117. (in Finnish) GA:Autere92. [854] Jarmo T. Alander. On Boolean SAT and GA. In Alander [1083], pages 190­207. GA:SAT. [855] B. G. W. Craenen, A. E. Eiben, E. Marchiori, and A. G. Steenbeek. Combining local search and fitness function adaptation in a GA for solving binary constraint satisfaction problems. page 381, 2000. ga00aBGWCraenen. [856] Kensaku Sakamoto, Hidetaka Gouzu, Ken Komiya, Daisuke Kiga, Shigeyuki Yokoyama, Takashi Yokomori, and Masami Hagiya. Molecular computation by DNA hairpin formation. Science, 288(5469):1223­1226, 19. May 2000. ga00aKensakuSakamoto. [857] Qinghua Liu, Liman Wang, Anthony G. Frutos, Anne E. Condon, Robert M. Corn, and Lloyd M. Smith. DNA computing on surfaces. Nature, 403(6766):175­179, 13. January 2000. ga00aLMSmith. [858] Mitsunori Ogihara and Animesh Ray. DNA computing on a ship. Nature, 403(6766):143­144, 13. January 2000. ga00aMitsunoriOgihara. [859] Stefan Harmeling. Solving satisfiability problems with genetic algorithms. In Genetic Algorithms and Genetic Programming at Stanford, pages 206­213, ? 2000. ga00aStefanHarmeling http://www.kyb. mpg.de/fileadmin/user_upload/files/publications/attachments/genetic_sat_%5B0%5D.pdf. [860] Tad Hogg and Dmitriy Portnov. Quantum optimization. Information Sciences, 128(?):181­197, ? 2000. ga00bTadHogg. [861] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. Parallel hybrid method for SAT that couples genetic algorithms and local search. IEEE Transactions on Evolutionary Computation, 5(4):323­334, August 2001. ga01aGFolino. [862] Habiba Drias and Mohamed Khabzaoui. Scatter search with random walk strategy for SAT and MAXW-SAT problems. In L. Monostori, J. Vґancza, and M. Ali, editors, Engineering of Intelligent Systems, 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2001, volume LNAI of 2070, pages 35­44, Budapest (Hungary), 4.-7. June 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aHDrias. [863] Hubert Hug and Rainer Schuler. Strategies for the development of a peptide computer. Bioinformatics, 17(4):364­368, 2001. ga01aHubertHug.
98
Genetic algorithms in mathematics and statistics
[864] Zoran Ognjanoviґc, Josef Kratica, and Milosnoviґc. A genetic algorithm for satisfiability problem in a probabilistic logic: a first report. In S. Benferhat and P. Besnard, editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 6th European Conference, ECSQARU 2001, volume LNAI of 2143, pages 805­816, Toulouse (France), 19.-21. September 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aZOgnjanovic. [865] Habiba Drias. Genetic algorithm versus scatter search and solving hard MAX-W-SAT problems. In J. Mira and A. Prieto, editors, Connectionist Models of Neurons, Learning Processes and Artificial Intelligence, 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, volume LNCS of 2084, pages 586­593, Granada (Spain), 13.-15. June 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01bHDrias. [866] John H. Reif. Successes and challenges. Science, 296(5567):478­479, 19. April 2002. ga02aJHReif. [867] Mohamed Tounsi. A genetic-based approach for satisfiability problems. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence, Automated Reasoning, and Symbolic Computation, Joint International Conference, AISC 2002 and Calculemus 2002, volume LNAI of 2385, pages 208­216, Marseille (France), 1.-5. July 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02aMTounsi. [868] Ravinderjit S. Braich, Nickolas Chelyapov, Cliff Johnson, Paul W. K. Rothemund, and Leonard M. Adleman. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 296(5567):499­502, 19. April 2002. ga02aRSBraich. [869] RaphaЁel Dorne and Jin-Kao Hao. Nouveaux operators genetiques appliques au SAT [New genetic operators based on stratified population for SAT]. In ?, editor, Proceedings of the Evolution Artificielle '94, page ?, Toulouse (France), September 1994. ? [1096] ga94aDorne. [870] Jin-Kao Hao and RaphaЁel Dorne. An empirical comparison of two evolutionary methods for satisfiability problems. In ICEC'94 [1051], pages 450­455. ga94aJ-KHao. [871] T. C. S. Lee and A. L. G. Koh. Genetic algorithm approaches to SAT problems. In ?, editor, Proceedings of the 2nd Singapore International Conference on Intelligent Systems (SPICIS'94), pages B171­B176, Singapore, 14.-17. November 1994. Japan-Singapore AI Centre, Singapore. CCA 61010/96 ga94aTCSLee. [872] J. Frank. A study of genetic algorithm to find approximate solutions to hard 3-SAT problems. In E. A. Yfantis, editor, Proceedings of the Intelligent Systems - Third Golden West International Conference, Edited and Selected Papers, volume 1-2, page ?, Las Vegas, NV, 6.-8. June 1994. Kluwer Academic Publishers, Dordrecht, Netherlands. P67837 ga94bFrank. [873] Jin-Kao Hao and RaphaЁel Dorne. A new population-based method for satisfiability problems. In ?, editor, Proceedings of the ECAI Workshop on Applied Genetic and other Evolutionary Algorithms, page ?, Amsterdam, ? 1994. ? [1096] ga94bJ-KHao. [874] Charles Fleurent and Jacques A. Ferland. Object-oriented implementation of heuristic search methods for graph coloring, maximum clique, and satisfiability. DIMACS, ?(?):?, ? 1995. (To appear; ftp: //ftp.iro.umontreal.capub/optim/fleurent/papers/dimacs/dimacs.ps.Z) ga95aFleurent. [875] Jin-Kao Hao. A clausal genetic representation and its evolutionary procedures for satisfiability problems. In Pearson et al. [1059], pages 289­292. ga95aHao. [876] Kihong Park. A comparative study of genetic search. In Eshelman [1055], page ? ga95aPark. [877] B. Bush and L. Rabelo. Development of a fuzzyBLsystems design strategy using evolutionary computation. In ?, editor, Proceedings of the 29th ISATA, volume ?, page ?, Florence (Italy), 3.-6. June 1996. ISATA. ISATA prog ga96aBBush. [878] D. Cambiaghi, M. Gadola, D.Vetturi, and L. Manzo. Genetic algorithms for tyre modelling fitting in automotive dynamics system. In ?, editor, Proceedings of the 29th ISATA, volume ?, page ?, Florence (Italy), 3.-6. June 1996. ISATA. ISATA prog ga96aCambiaghi. [879] Peter Smith. Finding hard satisfiability problems using bacterial conjugation. In Terence C. Fogarty?, editor, Evolutionary Computing, Proceedings of the AISB96 Workshop, pages 236­244, Brighton, UK, 1.-2. April 1996. Springer-Verlag, Berlin (Germany). ga96aPeterSmith. [880] J. Gottlieb and N. Voss. Representations, fitness functions and genetic operators for the satisfiability problem. In ? [1062], pages 55­68. prog ga97aGottlieb. [881] A. Strohmaier. Multi-flIP networks: parallelizing GenSAT. In Proceedings of the 21st Annual German Conference on Artificial Intelligence, pages 349­360, Freiburg (Germany), 9.-12. September 1997. SpringerVerlag, Berlin (Germany). CCA782/98 ga97aStrohmaier.
Bibliography
99
[882] Aґ goston E. Eiben and J. K. van der Hauw. Solving 3-SAT by GAs adapting constraint weights. In Proceedings of 1997 IEEE International Conference on Evoutionary Computation, pages 81­86, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. CCA44443/97 ga97bEiben. [883] Soraya Rana and Darrell Whitley. Genetic algorithm behavior in the MAXSAT domain. In Agoston E. Eiben, Thomas BaЁck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, 5th International Conference, volume LNCS of 1498, pages 785­794, Amsterdam (The Netherlands), September 1998. Springer-Verlag Berlin Heidelberg. * www /Springer ga98aSRana. [884] Soraya Rana, Robert B. Heckendorn, and Darrell L. Whitley. A tractable Walsh analysis of SAT and its implications for genetic algorithms. In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Conference on Innovative Applications of Artificial Intelligence, pages 392­397, Madison, WI, 26.-30. July 1998. American Association of Artificial Intelligence, Menlo Park. ga98aSorayaRana. [885] E. Marchiori and C. Rossi. A flipping genetic algorithm for hard 3-SAT problems. In Proceedings of the Genetic and Evolutionary Computation Conference, volume 1, pages 459­465, ?, ? 1999. ? [?] ga99aMarchiori. [886] Robert B. Heckendorn, Soraya Rana, and Darrell L. Whitley. Polynomial time summary statistics for a generalization of MAXSAT. In ?, editor, Proceedings of the GECCO-99 Conference, volume ?, pages 281­288, ?, ? 1999. Morgan Kaufmann, Los Altos, CA. ga99bRBHeckendorn. [887] Robert B. Heckendorn, Soraya Rana, and Darrell L. Whitley. Test function generators as embedded landscapes. In ?, editor, Foundations of Genetic Algorithms, FOGA-5, page ?, ?, ? 1999. Morgan Kaufmann, Los Altos, CA. ga99cRBHeckendorn. [888] Thomas A. Bitterman. Genetic algorithms and the satisfiability of large-scale Boolean expressions. PhD thesis, Louisiana State University of Agricultural and Mechanical College, 1993. * DAI Vo. 54 No. 9 ga:BittermanThesis. [889] Kenneth A. De Jong and William M. Spears. Using genetic algorithms to solve NP-complete problems. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 124­132, Georg Mason University, 4.-7. June 1989. Morgan Kaufmann Publishers, Inc. ga:DeJong89a. [890] William M. Spears. Using neural networks and genetic algorithms as heuristics for NP-complete problems. Master's thesis, George Mason University, 1990. ga:Spears90b. [891] Cathy W. S. Chen, Tsai-Hung Cherng, and Berlin Wu. On the selection of subset bilinear time series models: a genetic algorithm approach. Computational Statistics, 16(4):505­517, ? 2001. * www /Springer ga01aCWSChen. [892] Berlin Wu and Chih-Li Chang. Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models. Computational Statistics & Data Analysis, 38(3):315­330, 28. January 2002. www /Elsevier ga02aBWu. [893] D. Fouskakis and D. Draper. Stochastic optimization: a review. International Statistical Review, 70(3):315­ 349, December 2002. ISI; ei TKKele ga02aDFouskakis. [894] Ilia Grigorenko and M. E. Garcia. Calculation of the partition function using quantum genetic algorithms. Physica A Statistical Mechanics and its Applications, 313(3-4):463­470, October 2002. NASA ADS ga02aIGrigorenko. [895] Enrique Alba and Josґe M. Troya. Improving flexibility and efficiency by adding parallelism to genetic algorithms. Statistics and Computing, 12(2):91­114, April 2002. ga02bEAlba. [896] M. Goґmez and C. Bielza. Node deletion sequences in influence diagrams using genetic algorithms. Statistics and Computing, 14(3):181­198, August 2004. ga04aMGomez. [897] Ming-Hung Kao, Abhyuday Mandal, and John Stufken. Efficient designs for event-related functional magnetic resonance imaging with multiple scanning sessions. Communications in Statistics - Theory and Methods, 38(16&17):3170­3182, January 2009. * www /Google ga09aMing-HungKao http://www. informaworld.com/smpp/content~content=a914064542&db=all. [898] Alberto Costa and Pierre Hansen. Comment on 'evolutionary method for finding communities in bipartite networks'. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(5):058101, November 2011. PubMed ga11aAlbertoCosta http://www.ncbi.nlm.nih.gov/pubmed/22181549. [899] Hsuan Jung and Paul Marjoram. Choice of summary statistic weights in approximate Bayesian computation. Statistical Applications in Genetics and Molecular Biology, 10(1), 2011. PubMed ga11aHsuanJung http://www.ncbi.nlm.nih.gov/pubmed/23089822.
100
Genetic algorithms in mathematics and statistics
[900] Iain G. Johnston, Sebastian E. Ahnert, Jonathan P. K. Doye, and Ard A. Louis. Evolutionary dynamics in a simple model of self-assembly. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83(6):066105, June 2011. PubMed ga11aIainGJohnston http://www.ncbi.nlm.nih.gov/pubmed/ 21797439. [901] Maoguo Gong, Bao Fu, Licheng Jiao, and Haifeng Du. Memetic algorithm for community detection in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(5):056101, November 2011. PubMed ga11aMaoguoGong http://www.ncbi.nlm.nih.gov/pubmed/22181467. [902] Osama R. Bilal and Mahmoud I. Hussein. Ultrawide phononic band gap for combined in-plane and out-ofplane waves. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(6):065701, December 2011. PubMed ga11aOsamaRBilal http://www.ncbi.nlm.nih.gov/pubmed/22304147. [903] Weihua Zhan, Zhongzhi Zhang, Jihong Guan, and Shuigeng Zhou. Evolutionary method for finding communities in bipartite networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83(6):066120, June 2011. PubMed ga11aWeihuaZhan http://www.ncbi.nlm.nih.gov/pubmed/ 21797454. [904] Darcie A. P. Delzell, Richard F. Gunst, William R. Schucany, Patrick S. Carmack, Qihua Lin, Jeffrey S. Spence, and Robert W. Haley. Key properties of D-optimal designs for event-related functional MRI experiments with application to nonlinear models. Statistics in Medicine, 31(29):3907­3920, December 2012. PubMed ga12aDarcieAPDelzell http://www.ncbi.nlm.nih.gov/pubmed/22744932. [905] Francesco Battaglia and Mattheos K. Protopapas. Multi-regime models for nonstationary time series. Computational Statistics, 27(2):319­341, June 2012. ISI ga12aFBattaglia http://www.springerlink. com/content/95520qp388w21155/. [906] Florian Frommlet, Ivana Ljubic, Helga Bjork Arnardottir, and Malgorzata Bogdan. QTL mapping using a memetic algorithm with modifications of BIC as fitness function. Statistical Applications in Genetics and Molecular Biology, 11(4):Article, 2012. PubMed ga12aFlorianFrommlet http://www.ncbi.nlm.nih. gov/pubmed/22628351. [907] J. A. Hirschfeld and H. Lustfeld. Finding stable minima using a nudged-elastic-band-based optimization scheme. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 85(5):056709, May 2012. PubMed ga12aJAHirschfeld http://www.ncbi.nlm.nih.gov/pubmed/23004905. [908] Luca Scrucca. GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4):1­37, April 2013. ga13aLucaScrucca https://www.researchgate.net/profile/Luca_Scrucca/publication/ 257428155_GA_A_Package_for_Genetic_Algorithms_in_R/links/00b4952542f74881ec000000.pdf. [909] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65­85, June 1994. * CCA 51415/94 ga94aWhitley. [910] Fred Glover. Genetic algorithms and scatter search: unsuspected potentials. Statistics and Computing, 4(2):131­140, June 1994. * CCA 54231/94 ga94bGlover. [911] John R. Koza. Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2):87­112, June 1994. * CCA 55502 ga94dKoza. [912] Zbigniew Michalewicz. Non-standard methods in evolutionary computation. Statistics and Computing, 4(2):141­155, June 1994. * CCA 54232/94 ga94eMichalewicz. [913] Thomas BaЁck. Basic aspects of evolution strategies. Statistics and Computing, 4(2):51­63, June 1994. * CCA 51414/94 ga94fBack. [914] David B. Fogel. Evolutionary programming: An introduction and some current directions. Statistics and Computing, 4(2):113­129, June 1994. * CCA 55465/94 ga94fFogel. [915] Sangit Chatterjee, Matthew Laudato, and Lucy A. Lynch. Genetic algorithms and their statistical applications: an introduction. Computational Statistics & Data Analysis, 22(6):633­654, 1996. ga96bChatterjee. [916] Luisa Franconi and Christopher Jennison. Comparison of a genetic algorithm and simulated annealing in an application to statistical image reconstruction. Statistics and Computing, 7(3):193­207, 1997. ga97aFranconi. [917] Pedro Larran~aga, Cindy M. H. Kuijpers, M. Poza, and R. H. Murga. Decomposing Bayesian networks: triangulation of the moral graph with genetic algorithms. Statistics and Computing, 7(1):19­34, January 1997. ga97aLarranaga. [918] T. B. Boffey and P. Saeidi. A parallel branch-and-bounf method for a network design problem. Belgium Journal of Operations Research, Statistics and Computer Science, 32(1):69­83, 1992. * IAOR 53091/93 ga:Boffey92a.
Bibliography
101
[919] G. E. P. Box. Evolutionary operation: A method for increasing industrial productivity. Journal of the Royal Statistical Society C, 6(2):81­101, 1957. MMitchell93d ga:Box57. [920] Emanuel Falkenauer. The grouping genetic algorithms ­ widening the scope of the GAs. Belgian Journal of Operations Research, Statistics and Computer Science, 33(1,2):79­102, 1993. GAdigest.v8n13 ga:Falkenauer93d. [921] B. Govaerts and Rubal P. Sanchez. Construction of exact D-optimal designs for linear regression models using genetic algorithms. Belgian Journal of Operations Research, Statistics and Computer Science, 32(1):153­174, 1992. * IAOR 53120/93 ga:Govaerts92a. [922] Zbigniew Michalewicz. Genetic algorithms for numerical optimization. Statistics and Computing, 1(1):75­ 91, 1991. Michalewicz92book ga:Michalewicz91d. [923] Peter A. N. Bosman and Dirk Thierens. Negative log-likelihood and statistical hypothesis testing as the basis of model selection in IDEAs. pages 51­58, 2000. ga00aPANBosman. [924] L. Juodis, A. Plukis, V. Remeikis, and K. Makariunas. Genetic algorithm in radioactive decay rate variations analysis. Europhysics Letters, 53(3):283­289, 1. February 2001. ga01aLJuodis. [925] Ying Tan and Jun Wang. Nonlinear blind source separation using higher order statistics and a genetic algorithm. IEEE Transactions on Evolutionary Computation, 5(6):600­612, December 2001. ga01aYTan. [926] Jan Roupec. A statistical approach to comparison of genetic algorithms. pages 147­152, 2002. ga02aJRoupec. [927] Heidi B. Goldfarb. Mixture-process experiments with control and noise variables. PhD thesis, Arizona State University, 2003. * www /UMI ga03aHBGoldfarb. [928] Vassilios N. Karavas. Evolutionary algorithms for statistics and finance. PhD thesis, University of Massachusetts Amherst, 2003. * www /UMI ga03aVNKaravas. [929] S. Sen, E. A. Sezer, C. Gokceoglu, and S. Yagiz. On sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference system. Journal of Intelligent & Fuzzy Systems, 23(6):297­304, ? 2012. ga12aSSen http://iospress.metapress.com/content/ u714h3pt82k48131/. [930] Geof H. Givens and Jennifer A. Hoeting. Computational Statistics. Wiley, New York, 2013. Google scholar ga13aGeofHGivens http://stats.cwslive.wiley.com/details/book/2712571/ Computational-Statistics-2nd-Edition.html. [931] Jonas Kalderstam, Patrik Eden, Par-Ola Bendahl, Carina Strand, Marten Ferno, and Mattias Ohlsson. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms. Artificial Intelligence in Medicine, 58(2):125­132, June 2013. PubMed ga13aJonasKalderstam http://www.ncbi.nlm.nih.gov/pubmed/23582884. [932] David Rogers and A. J. Hopfinger. Application of genetic function approximation to quantitative structureactivity relationships and quantitative structure-property relatioships. Journal of Chemical Information and Computer Sciences, 34(4):854­866, July-August 1994. (tama on????) * EI M177701/94 ga94aDRogers. [933] Don E. Waagen, M. D. Parsons, John R. McDonnell, and J. D. Argast. Evolving multivariate mixture density estimates for classification. In ?, editor, Neural and Stochastic Methods in Image and Signal Processing III, volume SPIE-2304, page ?, San Diego, CA, 28. -29. July 1994. The International Society for Optical Engineering. ga94bWaagen. [934] Kelly D. Crawford and Roger L. Wainwright. Applying genetic algorithms to outlier detection. In Eshelman [1055], page ? prog ga95aCrawford. [935] Aristides T. Hatjimihail and Theophanes T. Hatjimihail. Design of statistical quality control procedures using genetic algorithms. In Eshelman [1055], page ? prog ga95aHatjimihail. [936] Trenton L. Pamplin. Hybridizing statistics with genetic algorithms. Master's thesis, Montana State University, 1995. ga95aTrentonLPamplin http://www.math.montana.edu/~jobo/writing/pamplin. pdf. [937] John J. Grefenstette. Virtual genetic algorithms: First results. Research Report AIC-95-013, Naval Research Laboratory, 1995. (ftp://ftp.aic.nrl.navy.mil/pub/papers/1995/AIC-95-013.ps(.Z)) ga95bGrefenstette. [938] Cory J. Hoelting, Dale A. Schoenefeld, and Roger L. Wainwright. Approximation techniques for variations of the p-median problem. In Proceedings of the 1995 ACM Symposium on Applied Computing, pages 293­299, Nashville, TN, 26.-28. February 1995. ACM, New York, NY. EI M195242/95 ga95bHoelting.
102
Genetic algorithms in mathematics and statistics
[939] Y. Shen and R. M. M. Chen. Application of genetic algorithm for response-surface modeling in optimal statistical design. In Proceedings of the 1995 IEEE International Symposium on Circuits and Systems, page 2341pp, Seattle, WA, April 30.- May 3. 1995. IEEE, New York. P67753 ga95bShen. [940] Michael J. Lenox and Yacov Y. Haimes. Constrained extremal distribution selection method. Risk Analysis, 16(2):161­176, April 1996. ga96aLenox. [941] S. Varricchio and L. Cheim. A genetic algorithm solution to the maximum likelihood statistical problem. In Proceedings of the 1996 IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 1983­1988, Beijing, China, 14.-17. October 1996. IEEE, New York, NY. CCA24517/97 ga96aVarricch. [942] S. S. Gupta and K. J. Miescke. Bayesian look ahead one-stage sampling allocations for selection of the best population. J. Stat. Plan. Inference (Netherlands), 54(2):229­244, 1996. CCA 77196/96 ga96bSSGupta. [943] David Rogers. Evolutionary statistics: Using a genetic algorithm and model reduction to isolate alternate statistical hypotheses of experimental data. In Thomas BЁack, editor, Proceedings of the Seventh International Conference on Genetic Algorithms, pages 735­742, East Lansing, MI, 19.-23. July 1997. Morgan Kaufmann Publishers, Inc., San Francisco, CA. ga97aDRogers. [944] Hugo G. Hiden, Mark J. Willis, M. T. Tham, P. Turner, and Gary A. Montague. Non-linear principal components analysis using genetic programming. In Proceedings of the Second International conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 302­307, Glasgow, UK, 2.-4. September 1997. IEE, London (UK). CCA357/98 ga97bHGHiden. [945] C. Holmes and B. Mallick. Parallel Markov chain Monte Carlo sampling. Technical report ?, Imperial College, 1998. [1097] ga98aCHolmes. [946] J. Diaz, J. Petit, P. Psycharis, and M. Serna. A parallel algorithm for sampling matchings from an almost uniform distribution. In K.-Y. Chwa and O. H. Ibarra, editors, Proceedings of the ISAAC'98, 9th International Symposium on Algorithms and Computation, volume 1533 of Lecture Notes in Computer Science, pages 457­467, Taejon (South Korea), December 1998. Springer-Verlag, Heidelberg. ga98aJDiaz. [947] A. K. Hartmann. Ground-state landscape of 2d ± J Ising spin glasses. The European Physical Journal B, 8(4):619­626, ? 1999. * www /Springer ga99cAKHartmann. [948] E. Berg. Simple convergent genetic algorithm for inversion of multiparameter data. In Extended Abstracts with Biographies 1990 Technical Program from the 60th Annual International SEG Meeting, pages 1126­ 1128. ?, 1990. ga:EBerg90. [949] Don Waagen and John R. McDonnell. Probability density model and parameter estimation using evolutionary programming. In David B. Fogel and W. Atmar, editors, Proceedings of the 2nd Annual Conference on Evolutionary Programming, page ?, La Jolla, CA, 25.-26. February 1993. Evolutionary Programming Society, San Diego. ga:McDonnell93d. [950] R. B. Safadi and R. H. Wang. The use of genetic algorithms in the construction of mixed multilevel orthogonal arrays. In E. M. Keramidas, editor, Proceedings of the 23rd Symposium of the Interface between Computing Science and Statistics ­ Critical Applications of Scientific Computing, pages 322­325, Seattle, WA, 21.-24. April 1991. Interface Foundation North America. P55274 ga:RHWang91. [951] S. L. Crawford. Genetic optimization for exploratory projection pursuit. In E. M. Keramidas, editor, Proceedings of the 23rd Symposium of the Interface between Computing Science and Statistics ­ Critical Applications of Scientific Computing, pages 318­321, Seattle, WA, 21.-24. April 1991. Interface Foundation North America. P55274 ga:SLCrawford91. [952] W. G. Wilson and K. Vasudevan. Application of the genetic algorithm to residual statics estimation. Geophysical Research Letters, 18(12):2181­2184, December 1991. Fogel/bib ga:WGWilson91a. [953] Alberto Aґ lvarez, Cristґobal Loґpez, Margalida Riera, Emilio Hernaґndez-Garcґia, and Joaquґin Tintorґe. Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms. Geophysical Research Letters, 27(?):2709­2712, ? 2000. ga00aAAlvarez. [954] Adolfo Gonzaґlez Yunes, Miguel A. Aґ vila Aґ lvarez, Eduardo Goґmez Ramґirez, Xavier Vilasis Cardona, Oriol Mulet, and Ferran Mazzanti. Redes neuronales para identificacioґn y prediccioґn de series de tiempo. Revista del Centro de Investigaciґon, Universidad La Salle, 4(014):45­65, ? 2000. ga00aAGYunes. [955] Cristґobal Loґpez, Alberto Aґ lvarez, and Emilio Hernaґndez-Garcґia. Forecasting confined spatiotemporal chaos with genetic algorithms. Physical Review Letters, 85(?):2300­2303, ? 2000. ga00aCLopez. [956] Ikuo Yoshihara, T. Aoyama, and Moritoshi Yasunaga. A fast model-building method for time series using genetic programming. page 537, 2000. ga00aIYoshihara.
Bibliography
103
[957] T. Aikawa. Nonlinear time-series analysis of pulsation of post-AGB stars by genetic algorithm/neural network hybrid systems. In L. Szabados and D. Kurtz, editors, The Impact of Large-Scale Surveys on Pulsating Star Research, ASP Conference Series, volume 203, pages 135­136, ?, ? 2000. ? NASA ADS ga00aTAikawa. [958] Xiao-Zhi Gao, Seppo J. Ovaska, and Y. Dote. Motor fault detection using Elman neural network with genetic algorithm-aided training. In Proceedings of the 2000 IEEE International Conference on Systems, Man, and Cybernetics, volume 4, pages 2386­2392, ?, ? 2000. IEEE, Piscataway, NJ. ga00aXiao-ZhiGao. [959] David B. Fogel. Evolutionary Computation, Principles and Practice for Signal Processing. SPIE Press, Bellingham, WA, 2000. ga00bDBFogel. [960] A. Alvarez, A. Orfila, and J. Tintore. DARWIN: An evolutionary program for nonlinear modeling of chaotic time series. Computer Physics Communications, 136(3):334­349, 15. May 2001. ga01aAAlvarez. [961] Alaa F. Sheta and Kenneth A. De Jong. Time-series forecasting using GA-tuned radial basis functions. Information Sciences, 133(?):221­228, ? 2001. * TKKpaa ga01aAFSheta. [962] L. Y. Fong and K. Y. Szeto. Rules extraction in short memory time series using genetic algorithms. The European Physical Journal B, 20(4):569­572, April 2001. NASA ADS ga01aLYFong. [963] E. Goґmez-Ramґirez and X. Vilasis-Cardona. Adaptive multiresolution filtering to forecast nonlinear time series. In Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on, volume 1, pages 400­405. IEEE, Piscataway, NJ, 12.-17. May 2000. ga02aEGomez-Ramirez. [964] G. Armano, A. Murru, and F. Roli. Stock market prediction by a mixture of genetic-neural experts. International Journal of Pattern Recognition and Artificial Intelligence, 16(5):?, August 2002. TKK/TKO ga02aGArmano. [965] Henry Leung and Vinay Varadan. System modeling and design using genetic programming. In Proceedings of the First IEEE International Conference on Cognitive Informatics (ICCI'02), page ?, ?, ? 2002. IEEE, Piscataway, NJ. ga02aHenryLeung. [966] Michael Beenstock and George Szpiro. Specification search in nonlinear time-series models using the genetic algorithm. Journal of Economic Dynamics and Control, 26(5):811­835, May 2002. www /Elsevier ga02aMBeenstock. [967] Li Bin, Yang Junan, and Zhuang Zhenquan. GAQPR and its application in discovering frequent structures in time series. In Proceedings of the 2003 IEEE International Conference on Neural Networks & Signal Processing, volume 1, pages 399­403, ?, 14.-17. December 2003. IEEE, Piscataway, NJ. ga03aLiBin. [968] A. S. Cofin~o, J. M. Gutiґerrez, and M. L. Ivanissevich. Evolving modular networks with genetic algorithms: application to nonlinear time series. Expert Systems, 21(4):208­216, September 2004. ga04aASCofino. [969] Harri Niska, Teri Hiltunen, Ari Karppinen, Juhani Ruuskanen, and Mikko Kolehmainen. Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17(?):159­167, ? 2004. ga04aHarriNiska. [970] Harri Niska, Minna RantamaЁki, Teri Hiltunen, Ari Karppinen, Jaakko Kukkonen, Juhani Ruuskanen, and Mikko Kolehmainen. Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39(?):6524­6536, ? 2005. ga05aHarriNiska. [971] Jacek Frankowski. Neural network with hybrid learning strategy for financial time series forecasting. In Yuping Wang, Yiu ming Cheung, and Hailin Liu, editors, Advances in Computational Intelligence and Security, Proceedings of the Workshop of 2005 International Conference on Computational Intelligence and Security, pages 72­76, Xian (China), 15. December 2005. Xidian University Press. ga05aJFrankowski. [972] Reinhard Zierhofer. Genetische programmierung, grundlagen und einsatz von symbolischer regression in der finanzwirtschaftlichen praxis. Master's thesis, UniversitaЁt Wien, Institut fuЁr Finanzwirtschaft, 2005. www /Google ga05aRZierhofer. [973] A. Flores-Mendez and Eduardo Goґmez-Ramґirez. Forecasting time series with a new architecture for polynomial artificial neural networks. In Proceedings of the 2006 International Joint Conference on Neural Networks, volume ?, pages 4357­4362, Vancouver, BC, 16.-21. July 2006. IEEE, Piscataway, NJ. ga06aAFlores-Mendez. [974] Ronen Tal-Botzer, Nir Hadaya, Rachel S. Levy-Drummer, Ariel Feiglin, David H. Shalom, and Avidan U. Neumann. Biomathematics oriented machine learning system for reconstructing temporal profiles of biological or clinical markers. In ?, editor, Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems, pages 563­568, ?, ? 2006. IEEE Computer Society, Piscataway, NJ. ga06aRTal-Botzer.
104
Genetic algorithms in mathematics and statistics
[975] Eduardo Goґmez-Ramґirez, K. Najim, and E. Ikonen. Forecasting time series with a new architecture for polynomial artificial neural networks. Applied Soft Computing, 7(4):1209­1216, August 2007. ga07aEGomez-Ramirez. [976] Francesco Battaglia and Mattheos K. Protopapas. Time-varying multi-regime models fitting by genetic algorithms. Working Paper WPS-009 20/2/2009, COMISEF EU Network, 2009. ga09aFBattaglia http://comisef.eu/files/wps009.pdf. [977] Francesco Battaglia and Mattheos K. Protopapas. Multi-regime models for nonlinear nonstationary time series. Working Paper WPS-026 28/1/2010, COMISEF EU Network, 2010. ga10aFBattaglia http: //comisef.eu/files/wps026.pdf. [978] Francesco Battaglia and Mattheos K. Protopapas. Time-varying multi-regime models fitting by genetic algorithms. Journal of Time Series Analysis, 32(3):237­252, May 2011. ISI ga11aFBattaglia http://apps.isiknowledge.com/full_record.do?product=WOS&qid=3&SID=R2iL6eGmjMH5HnfOP7b& search_mode=CitedRefIndex&viewType=fullRecord&doc=1&page=1&log_event=no. [979] Roberto Baragona, Francesco Battaglia, and Irene Poli. Evolutionary computation. In ?, editor, Evolutionary Statistical Procedures, pages ­, ?, ? 2011. Springer. * Google ga11aRobertoBaragona http://www.springerlink.com/content/m272775gg1827117/. [980] Karin Lebl, Katharina Brugger, and Franz Rubel. Predicting Culex pipiens/restuans population dynamics by interval lagged weather data. Parasites & Vectors, 6(1):129, May 2013. PubMed ga13aKarinLebl http://www.ncbi.nlm.nih.gov/pubmed/23634763. [981] Wei-Chang Yeh. New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems, 24(4):661­665, April 2013. PubMed ga13aWei-ChangYeh http://www.ncbi.nlm.nih.gov/ pubmed/24808385. [982] A. Conway. Echoed time series predictions neural networks and genetic algorithms. Vistas in Astronomy, 38(3):351, ? 1994. NASA ADS ga94aAConway. [983] Jason T. Eglit. Trend prediction in financial time series. In Koza [1052], page ? conf.prog ga94aEglit. [984] Ari S. Nissinen. Structural optimization of feedforward neural networks using genetic algorithm. Master's thesis, Tampere University of Technology, Department of Electrical Engineering, Control Engineering Laboratory, 1994. (Report 5; in English) ga94aNissinen. [985] E. van Wanrooij. Evolving sequential neural networks for time series forecasting. Master's thesis, University of Utrecht, Department of Computer Science, 1994. Branke ga94aWanrooij. [986] Mark A. Warren. Stock price time series prediction using genetic programming. In Koza [1052], page ? conf.prog ga94aWarren. [987] John R. McDonnell and Don E. Waagen. Evolving recurrent perceptrons for time-series modeling. IEEE Transactions on Neural Networks, 5(1):24­38, January 1994. ga94bMcDonnell. [988] E. H. N. Oakley. The application of genetic programming to the investigation of short, noisy, chaotic data series. In Terence C. Fogarty, editor, Proceedings of the AISB Workshop on Evolutionary Computation; Selected Papers, pages 320­332, Leeds (UK), 11.-13- April 1994. Springer-Verlag, Berlin. * CCA 11915/95 ga94bOakley. [989] Jie Lin, Y. Bartal, and R. E. Uhrig. (predicting the severity of nuclear power plant transients by using genetic and nearest neighbor algorithms). Nuclear Technology, 111(?):46, ? 1995. [1011] ga95aJieLin. [990] Cao Liangyue, Hong Yiguang, Fang Haiping, and He Guowei. (predicting time series). Physica D, 85(?):225, ? 1995. [1011] ga95aLiangyue. [991] Michio Sugeno and Soon-Hak Kwon. New approach to time series modeling with fuzzy measures and the choquet integral. In Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, volume 2, pages 799­804, Yokohama (Japan), 20.-24. March 1995. IEEE, Piscataway, NJ. EI M161877/95 ga95bSugeno. [992] A. Agapie. Parameter estimation in time series forecasting using genetic algorithms. In Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 3, pages 2155­ 2158, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). CCA42732/98 ga96aAAgapie. [993] P. Cortez, J. Machado, and J. Neves. An evolutionary artificial neural network time series forecasting system. In Proceedings of the IASTED International Conference on Artificial Intelligence, Expert Systems and Neural Networks, pages 278­281, Honolulu, HI, 19.-21. August 1996. IASTED, Anaheim, CA (USA). CCA54348/97 ga96aCortez.
Bibliography
105
[994] Harri JaЁske. One-step-ahead prediction of sunspots with genetic programming. In Alander [1049], pages 79­88. (ftp://ftp.uwasa.fics/2NWGA/Jaske.ps.Z) ga96aJaske. [995] Jari KyngaЁs and Juha Hakkarainen. Predicting sunspot numbers with evolutionarily optimized neural networks. In Alander [1049], pages 173­182. (ftp://ftp.uwasa.fics/2NWGA/Kyngas.ps.Z) ga96aKyngas. [996] Brian S. Mulloy, Rick L. Riolo, and Robert S. Savit. Dynamics of genetic programming and chaotic time series prediction. In Koza et al. [1060], pages 166­174. * ga96aMulloy. [997] Alexandru Murgu. Risk-sensitive traffic control of ATM networks using time series GA modelling. In Alander [1049], pages 251­266. (ftp://ftp.uwasa.fics/2NWGA/Murgu.ps.Z) ga96aMurgu. [998] Ari S. Nissinen and Hannu Koivisto. Identification of multivariate Volterra series model using genetic algorithm. In Alander [1049], pages 151­162. (ftp://ftp.uwasa.fics/2NWGA/Nissinen.ps.Z) ga96aNissinen. [999] Sathyanarayan S. Rao and Kumar Chellapilla. Evolving reduced parameter bilinear models for time series prediction using fast evolutionary programming. In Koza et al. [1060], page ? conf.prog ga96aRao. [1000] Bruce A. Whitehead and Timothy D. Choate. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Transactions on Neural Networks, 7(4):869­ 880, 1996. ga96aWhitehead. [1001] A. V. Adamopoulos, S. D. Likothanassis, and E. F. Georgopoulos. Extracting structural characteristics of a nonlinear time series using genetic algorithms. In Proceedings of the Intelligent Information Systems, pages 179­183, Grand Bahama Island, Bahamas, 8.-10. December 1997. IEEE Computer Society Press, Los Alamitos , CA. CCA9953/98 ga97aAdamopou. [1002] C. Robinson and N. Mort. Evolutionary hierarchical model for predicting values from real-world time-series. In Proceedings of the Applications of Soft Computing, volume SPIE-, pages 135­143, San Diego, CA, 28.29. July 1997. SPIE ­ International Society for Optical Engineering, Belligham. P77727 ga97aCRobinson. [1003] Chin Teck Chai, Chua Hong Chuek, D. P. Mital, and Tan Thiam Huat. Time series modelling and forecasting using genetic algorithms. In Proceedings of the 1997 First International Conference on KnowledgeBased Intelligent Electronic Systems, volume 1, pages 260­268, Adelaide, SA (Australia), 21.-23. May 1997. IEEE, New York, NY. CCA90524/97 ga97aChinChai. [1004] Daijin Kim. Forecasting time series with a genetic fuzzy predictor ensemble. J. KISS(B), Softw. Appl. (South Korea), 24(2):193­206, 1997. In Korean CCA59147/97 ga97aDKim. [1005] Prisdha Dharma. Automatic model construction for time series analysis via genetic algorithm. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at Stanford 1997, page ?, Stanford, CA, Winter 1997. Stanford University Bookstore. Koza ga97aDharma. [1006] J. Neves and P. Cortez. An artificial neural network-genetic based approach for time series forecasting. In Proceedings of the 4th Brazilian Symposium on Neural Networks, pages 9­13, Goiania, Brazil, 3.-5. December 1997. IEEE Computer Society, Los Alamitos , CA. CCA9679/98 ga97aJNeves. [1007] James V. Hansen and Ray D. Nelson. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Transactions on Neural Networks, 8(4):863­873, July 1997. ga97aJVHansen. [1008] H. Kinjo, K. Nakazono, and T. Yamamoto. Pattern recognition for time series signals using recurrent neural networks by genetic algorithms. Transactions of the Institute of System, Control, and Information Engineers (Japan), 10(6):304­314, 1997. In Japanese CCA71010/97 ga97aKinjo. [1009] S. Rolf, Joachim Sprave, and W. Urfer. Model identification and parameter estimation of ARMA models by means of evolutionary algorithms. In Proceedings of the IEEE/IAFE Computational Intelligence in Finance Engineering Conference [1095], page ? conf.prog ga97aRolf. [1010] Shu-Heng Chen and Chia-Hsuan Yeh. Using genetic programming to model volatility in financial time series. In Koza et al. [1081], page ? conf.prog ga97aS-HChen. [1011] George G. Szpiro. Forecasting chaotic time series with genetic algorithms. Physical Review E, 55(3A):2557­2568, March 1997. ga97aSzpiro. [1012] Daijin Kim and Chulhyun Kim. Forecasting time series with genetic fuzzy predictor ensemble. IEEE Transactions on Fuzzy Systems, 5(4):523­535, November 1997. ga97bDKim. [1013] Xin Yao and Yong Liu. A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks, 8(3):694­713, May 1997. ga97bYao. [1014] A. Agapie. Forecasting the economic cycles based on an extension of the Holt-Winters model. A genetic algorithms approach. In Proceedings of the IEEE/IAFE Computational Intelligence in Finance Engineering Conference [1095], page ? conf.prog ga97cAgapie.
106
Genetic algorithms in mathematics and statistics
[1015] K. Chellapilla and S. S. Rao. Optimization of bilinear time series models using fast evolutionary programming. IEEE Signal Processing Letters, 5(2):39­42, 1998. CCA26353/98 ga98aChellapilla. [1016] Peter J. Angeline. Evolving predictors for chaotic time series. In Steven K. Rogers, David B. Fogel, James C. Bezdek, and Bruno Bosacchi, editors, Applications and Science of Computational Intelligence, volume SPIE-3390, pages 170­180, ?, March 1998. The International Society for Optical Engineering. * www/SPIE Web ga98aPJAngeline. [1017] Dong-Wook Lee and Kwee Bo Sim. Evolving chaotic neural systems for time series prediction. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 310­316, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA81095/99 ga99aDong-Lee. [1018] E. Goґmez-Ramґirez, S. Soltani, A. Gonzaґlez-Yunes, and M. Avila-Alvarez. Mejoramiento del proceso de aprendizaje para la prediccioґn de series de tiempo empleando filtrado multirresolucioґn en redes neuronales artificiales polinomiales [Improving learning process for identification with multiresolution filtering in polynomial artificial neural networks]. In ?, editor, Segundo Encuentro de Computacioґn, ENC'99, page ?, Pachua?, 12.-15. September 1999. ? (in Spanish; in English as [1028]) ga99aEGomez-Ramirez. [1019] H. A. Mayer and R. Schwaiger. Evolutionary and coevolutionary approaches to time series prediction using generalized multi-layer perceptrons. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 275­280, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA84338/99 ga99aHAMayer. [1020] J. V. Hansen, J. B. McDonald, and R. D. Nelson. Time series prediction with genetic-algorithm designed neural network: An empirical comparison with modern statistical models. Comput. Intell. (USA), 15(3):171­184, 1999. CCA78213/99 ga99aJVHansen. [1021] Jiaqi Li, Yu Wang, and Masatoshi Kitaoka. Modelling threshold autoregressive in non-linear time series analysis with genetic algorithm and simulated annealing. In Proceedings of the Fifteenth International Conference on Production Research, volume 1, pages 793­796, Limerick, Ireland, 9.-12. August 1999. University of Limerick, Ireland. ga99aJiaqiLi. [1022] K. Kumar and B. Wu. Application of genetic and fuzzy modelling in time series analysis. In Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, pages 128­132, New Delhi, India, 23.-26. September 1999. IEEE Computer Society Press, Los Alamitos , CA. CCA86268/99 ga99aKKumar. [1023] Lishan Kang, Hongqing Cao, and Yuping Chen. The dynamic evolutionary modeling of higher-order ordinary differental equations for time series real-time prediction. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1224­1229, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA84339/99 ga99aLishKang. [1024] T. C. Chin and D. P. Mital. Genetic algorithms in time series prediction. Int. J. Knowl.-Based Intell. Eng. Syst. (Australia), 3(2):121­124, 1999. CCA60707/99 ga99aTCChin. [1025] Vamsi K. Yadavalli, Rahul K. Dahule, Sanjeev S. Tambe, and B. D. Kulkarni. Obtaining functional form for chaotic time series evolution using genetic algorithm. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(3):789­794, September 1999. NASA ADS ga99aVKYadavalli. [1026] I. Yoshihara, M. Numata, K. Sugawara, S. Yamada, and K. Abe. Time series prediction model building with BP-like parameter optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 295­301, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA82131/99 ga99aYoshihara. [1027] Byoung-Tak Zhang and Je-Gun Joung. Time series prediction using committee machines of evolutionary neural trees. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 281­186, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. CCA82130/99 ga99bByoung-TakZhang. [1028] E. Goґmez-Ramґirez, S. Soltani, A. Gonzaґlez-Yunes, and M. Avila-Alvarez. Improving learning process for identification with multiresolution filtering in polynomial artificial neural networks. In ?, editor, IASTED International Conference Intelligent Systems and Control, page ?, Santa Barabara, CA, 28.-30. October 1999. IASTED. (in Spanish as [1018]) ga99bEGomez-Ramirez. [1029] T. Meyer and Norman H. Packard. (time series prediction). In M.Casdagli and S. Eubanks, editors, Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, pages 249­264. AddisonWesley, New York, 1992. [1011] ga:Packard92a. [1030] Thomas Patrick Meyer. Long-range predictability of high-dimensional chaotic dynamics. PhD thesis, University of Illinois at Urbana-Champaign, 1992. ? NASA ADS ga:TPMeyer92a.
Bibliography
107
[1031] I. Krivyґ and J. Tvrdґik. Use of evolutionary algorithms for time series smoothing. In Matousek Radek and Osmera Pavel, editors, 7th International Conference on Soft Computing, Mendel 2001, pages 65­69, Brno, Czech Republic, 6.- 8.June 2001. ga01aIKrivy. [1032] Stephen Swift and Xiaohui Liu. Predicting glaucomatous visual field deterioration through short multivare time series modelling. Artificial Intelligence in Medicine, 24(1):5­24, January 2002. www /Elsevier ga02aSSwift. [1033] Bernhard Sendhoff and Martin Kreutz. Variable encoding of modular neural networks for time series prediction. In V. W. Porto, editor, Congress on Evolutionary Computation, volume 1, pages 259­266, New York, ? 1999. IEEE Press. ga99aBSendhoff. [1034] Shunji Matsumoto and Yutaka Miyahara. Automatic time series pattern creating method, 1999. (U. S. patent no. 5,974,355. Issued October 26 1999) ga99aSMatsumoto. [1035] Casimir C. Klimasauskas. Genetic function optimization for time series prediction. Advanced Technology for Developers, 1(3):?, July 1992. Advanced ... index ga:Klimasauskas92a. [1036] Vinay Varadan and Henry Leung. Reconstruction of polynomial systems from noisy time-series measurements using genetic programming. IEEE Transactions on Industrial Electronics, 48(4):742­748, August 2001. ga01aVVaradan. [1037] Witthaya Panyaworayan and Georg Wuetschner. Time series prediction using a recursive algorithm of a combination of genetic programming and constant optimization. pages 68­73, 2002. ga02aWPanyaworayan. [1038] William Leigh, Russell Purvis, and James M. Ragusa. Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decision Support Systems, 32(?):361­377, ? 2002. ga02aWilliamLeigh. [1039] Takashi Kimura. Nonlinear time-series data predicting device, 1996. (JP patent no. 8044699. Issued February 16 1996) * fi.espacenet.com ga96aTKimura. [1040] Dong Gyu Lee and Byong Whi Lee. Genetic programming model for long-term forecasting of electric power demand. Electr. Power Syst. Res. (Switzerland), 40(1):17­22, 1997. EEA69908/97 ga97aDGLee. [1041] Heikki HyЁotyniemi, Ari S. Nissinen, and Heikki N. Koivo. Evolution based self-organization of structures in linear time-series modeling. In Alander [1072], pages 135­152. (ftp://ftp.uwasa.fics/3NWGA/ Hyotyniemi.ps.Z) ga97aHyotyniemi. [1042] C. M. N. Pereira, R. Schirru, and A. S. Martinez. Learning an optimized classification-system from a data-base of time-series patterns using genetic algorithms. In Data Mining, page p.21, 1998. P84062 ga98aCMNPereira. [1043] Katsumi Honma. Time-series prediction device, 1998. (JP patent no. 10207857. Issued August 7 1998) * fi.espacenet.com ga98aKatsumiHonma. [1044] Shunji Matsumoto and Miyahara Yutaka. Automatic generating method for time-series pattern, 1998. (JP patent no. 10091691. Issued April 10 1998) * fi.espacenet.com ga98aSMatsumoto. [1045] A. F. Sheta and A. H. Abel-Wahab. Identification of nonlinear communication channel using evolutionary Volterra time-series. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 229­235, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77350/99 ga99aAFSheta. [1046] S. Rao Sathyanarayan, H. K. Birru, and K. Chellapilla. Evolving nonlinear time-series models using evolutionary programming. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 236­243, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. CCA77047/99 ga99aSathyana. [1047] Stephen L. Egbert, Enrique Martґinez-Meyer, Miguel Ortega-Huerta, and A. Townsend Peterson. Use of dtasets derived from time-series AVHRR imagery as surrogates for land cover maps in predicting species' distributions. In Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. IEEE International, volume 4, pages 2337­2339, ?, ? 2002. IEEE, Piscataway, NJ. ga02aSLEgbert. [1048] L. Leon Chen, Radhika Madhavan, Benjamin I. Rapoport, and William S. Anderson. Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction. IEEE Transactions on Bio-medical Engineering, 60(3):753­762, March 2013. PubMed ga13aLLeonChen http://www.ncbi.nlm.nih.gov/pubmed/21292589. [1049] Jarmo T. Alander, editor. Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications (2NWGA), Proceedings of the University of Vaasa, Nro. 11, Vaasa (Finland), 19.-23. August 1996. University of Vaasa. (ftp://ftp.uwasa.fics/2NWGA/*.ps.Z) ga96NWGA.
108
Genetic algorithms in mathematics and statistics
[1050] Yuval Davidor, Hans-Paul Schwefel, and Reinhard Manner, editors. Parallel Problem Solving from Nature ­ PPSN III, volume 866 of Lecture Notes in Computer Science, Jerusalem (Israel), 9.-14. October 1994. Springer-Verlag, Berlin. ga94PPSN3. [1051] Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, 27.-29. June 1994. IEEE, New York, NY. ga94ICCIEC. [1052] John R. Koza, editor. Genetic Algorithms at Stanford 1994, Stanford, CA, Fall 1994. Stanford Bookstore. Koza ga94Stanford. [1053] Proceedings of ICCI94/Neural Networks, Orlando, FL, 26. June - 2. July 1994. IEEE, New York, NY. ga94ICCINN. [1054] Stephen D. Scott, Sharad Seth, and Ashok Samal. A synthesizable VHDL coding of a genetic algorithm. Technical Report UNL-CSE-97-009, University of Nebraska-Lincoln, 1997. ga97aSDScott. [1055] Larry J. Eshelman, editor. Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, 15.-19. July 1995. ? prog ga95ICGA. [1056] Lance D. Chambers, editor. Practical Handbook of Genetic Algorithms, volume 1, Applications. CRC Press, Boca Raton, FL, 1995. ga95CRC1. [1057] Proceedings of the Second IEEE Conference on Evolutionary Computation, Perth (Australia), November 1995. IEEE, New York, NY. ga95ICEC. [1058] John R. Koza, editor. Genetic Algorithms at Stanford 1995, Stanford, CA, 1995. Stanford Bookstore. Koza ga95Stanford. [1059] D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors. Artificial Neural Nets and Genetic Algorithms, Al`es (France), 19.-21. April 1995. Springer-Verlag, Wien New York. ga95ICANNGA. [1060] John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Proceedings of the GP-96 Conference, Stanford, CA, 28.-31. July 1996. MIT Press, Cambridge, MA. prog ga96GP. [1061] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors. Parallel Problem Solving from Nature ­ PPSN IV, volume 1141 of Lecture Notes in Computer Science, Berlin (Germany), 22.-26. September 1996. Springer-Verlag, Berlin. ga96PPSN4. [1062] In ?, editor, Proceedings of the Artificial Evolution 97 (EA'97) Conference, Nimes (France), 22.-24. October 1997. Springer-Verlag, Berlin. prog ga97EA. [1063] Pavel Osmera, editor. Proceedings of the 3rd International Mendel Conference on Genetic Algorithms, Optimization problems, Fuzzy Logic, Neural networks, Rough Sets (MENDEL'97), Brno (Czech Republic), 25.-27. June 1997. Technical University of Brno. ga97Brno. [1064] Pavel Osmera, editor. Proceedings of the 4th International Mendel Conference on Genetic Algorithms, Optimization problems, Fuzzy Logic, Neural networks, Rough Sets (MENDEL'98), Brno (Czech Republic), 24.-26. June 1998. Technical University of Brno. ga98Brno. [1065] Lance D. Chambers, editor. Practical Handbook of Genetic Algorithms, volume 3, Complex Coding Systems. CRC Press, Boca Raton, FL, 1999. ga99CRC. [1066] Francisco J. Varela and Paul Bourgine, editors. Toward a Practice of Autonomous System: Proceedings of the First European Conference on Artificial Life, Paris, 11.-13. December 1991. MIT Press, Cambridge, MA. ga:ECAL91. [1067] Stuart A. Kauffman. The Origins of Order, Self-Organization and Selection in Evolution. Oxford University Press, New York, 1993. ga:Kauffman93book. [1068] ?, editor. Self-organization and life, from simple rules to global complexity, Proceedings of the Second European Conference on Artificial Life, Brussels (Belgium), 24.-26. May 1993. MIT Press, Cambridge, MA. ga:ECAL93. [1069] R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors. Artificial Neural Nets and Genetic Algorithms, Innsbruck, Austria, 13. -16. April 1993. Springer-Verlag, Wien. ga:ANNGA93. [1070] Laura Painton and James Campbell. Genetic algorithms in optimization of system reliability. IEEE Transactions on Reliability, 44(2):172­178, June 1995. ga95aPainton. [1071] David Mark Levine. A parallel genetic algorithm for the set partitioning problem. Report ANL-94/23, Argonne National Laboratory, 1994. (also as [161], ftp://info.mcs.anl.gov/pub/tech{{\protect\ protect\protect\edefOT1{OT1}\let\[email protected]\relax\protect\edefcmr{cmr}\protect\edefm{m}\ protect\edefn{n}\protect\xdef\OT1/cmtt/m/n/9{\OT1/cmr/m/n/9}\OT1/cmtt/m/n/9\[email protected]\ [email protected]\ignorespaces\relax\protect\relax\protect\edefcmr{cmr}\protect\xdef\OT1/cmtt/ m/n/9{\OT1/cmr/m/n/9}\OT1/cmtt/m/n/9\[email protected]\[email protected]{_}}}reports/ANL9423.ps.Z) * N95-10981 ga94bLevine.
Bibliography
109
[1072] Jarmo T. Alander, editor. Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications (3NWGA), Helsinki (Finland), 18.-22. August 1997. Finnish Artificial Intelligence Society (FAIS). (ftp://ftp.uwasa.fics/3NWGA/*.ps.Z) ga97NWGA. [1073] Stephanie Forrest, editor. Proceedings of the Fifth International Conference on Genetic Algorithms, Urbana-Champaign, IL, 17.-21. July 1993. Morgan Kaufmann, San Mateo, CA. ga:GA5. [1074] Celia C. Bojarczuk, Heitor S. Lopes, and Alex A. Freitas. An innovative application of a constrained-syntax genetic programming system to the problem of predicting survival of patients. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 11­21, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aCCBojarczuk. [1075] Hans-Paul Schwefel and R. MaЁnner, editors. Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, Dortmund (Germany), 1.-3. October 1991. Springer-Verlag, Berlin. (Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN1)) ga:PPSN1. [1076] Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield (UK), 12.-14. September 1995. IEEE. conf. prog. ga95Sheffield. [1077] Pavel Osmera, editor. Proceedings of the MENDEL'96, Brno (Czech Republic), June 1996. Technical University of Brno. ga96Brno. [1078] Catherine Bounsaythip and Jarmo T. Alander. Genetic algorithms in image processing - a review. In Alander [1072], pages 173­192. (ftp://ftp.uwasa.fics/3NWGA/Bounsaythip.ps.Z) ga97aBounsaythip. [1079] Xin Yao, editor. Progress in Evolutionary Computation. Proceedings of the AI'93 and AI'94 Workshops on Evolutionary Computation, volume 956 of Lecture Notes in Artificial Intelligence, Melbourne and Armidale (Australia), 16. November 1993 and 21.-22. November 1994 1995. Springer Verlag, Berlin. News /Yao ga95Springer956. [1080] Pavel Osmera, editor. Proceedings of the MENDEL'95, Brno (Czech Republic), 26.-28. September 1995. Technical University of Brno. ga95Brno. [1081] John R. Koza, Kalyanmoy Deb, Marco Dorico, David B. Fogel, Max Garson, Hitoshi Iba, and Rick L. Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann, San Francisco, CA. prog ga97GP. [1082] W. J. M. Philipsen and L. J. M. Cluitmans. Using a genetic algorithm to tune Potts neural networks. In Albrecht et al. [1069], pages 650­657. ga:Philipsen93a. [1083] Jarmo T. Alander, editor. Geneettiset algoritmit ­ Genetic Algorithms, number TKO-C53. Helsinki University of Technology (HUT), Department of Computer Science, 1992. (Proceedings of a GA Seminar held at HUT) GA:GArapo92. [1084] Fabio Boschetti, Mike C. Dentith, and Ron D. List. Inversion of seismic refraction data using genetic algorithms. Geophysics, 61(6):1715­1727, November-December 1996. ga96aBoschetti. [1085] Marc Gravel, Aaron Luntala Nsakanda, and Wilson Price. Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm. European Journal of Operational Research, 109(2):286­298, 1. September 1998. ga98aMarcGravel. [1086] Rolf Backofen and Peter Clote. Evolution as a computational engine. In ?, editor, Proceedings of the Annual Conference of the European Association for Computer Science Logic, volume 1414 of Lecture Notes in Computer Science, pages 35­55, °Arhus, Denmark, ? 1997. Springer-Verlag, Berlin. * www/Backofen ga97aBackofen. [1087] Darrell Whitley. Deception, dominance and implicit parallelism. Technical Report No. CS-91-120, Colorado State University, Department of Computer Science, Fort Collins, 1991. also as [661] ga:Whitley91e. [1088] Sakari Palko. Structural optimisation of cage induction motors using finite element analysis. Licentiate thesis, Helsinki University of Technology, Laboratory of Electromechanics, 1994. ga94aPalko. [1089] Steven Doyle, David Corcoran, and Jon Connell. Automated mirror design using an evolution strategy. Optical Engineering, 38(2):323­333, February 1999. ga99aStevenDoyle. [1090] Claas de Groot, Diethelm WuЁrtz, and Karl Heinz Hoffmann. Low autocorrelation binary sequences: Exact enumeration and optimization by evolutionary strategies. Technical Report No. 89-09, Interdisciplinary Center for Supercomputing Research, EidgenoЁssische Technische Hochschule ZuЁrich, 1989. also as [760] ga:Groot89a.
110
Genetic algorithms in mathematics and statistics
[1091] K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 5(6):565­ 588, December 2001. ga01aKCTan. [1092] Arne Elofsson, Scott Michael Le Grand, and David Eisenberg. Local moves: An efficient algorithm for simulation of protein folding. Proteins: Structure, Function, and Genetics, 23(1):73­82, September 1995. ga95aElofsson. [1093] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Artificial Intelligence. Springer-Verlag, New York, 1992. ga:Michalewicz92book. [1094] Nguyen Xuan Hoai, R. I. McKay, and H. A. Abbass. Tree adjoining grammars, language bias, and genetic programming. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 335­344, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aNXHoai. [1095] Proceedings of the IEEE/IAFE Computational Intelligence in Finance Engineering Conference, New York, 23.-25. March 1997. IEEE, Piscataway, NJ. conf. prog ga97CIFEr. [1096] Jin-Kao Hao and RaphaЁel Dorne. Une approche evolutionniste pour le probleme d'allocation de frequences dans les reseaux radio-mobiles [Study of genetic search for the frequency assignment problem]. In ?, editor, Evolution Artificielle 95 (EA'95), pages 333­344, Brest (France), 4.-6. September 1995. Springer-Verlag, Berlin. * CCA 59761/96 ga95aJ-KHao. [1097] Honghua Dai, Gang Li, and Yiqing Tu. An empirical study of encoding schemes and search strategies in discovering causal networks. In Tapio Elomaa, Heikki Mannila, and H. Toivonen, editors, Proceedings of the ECML 2002, 13th European Conference on Machine Learning, volume 2430 of Lecture Notes in Computer Science, pages 48­59, Helsinki (Finland), 19.-23. August 2002. Springer-Verlag, Heidelberg. ga02aHonghuaDai. Notations (ref) = the bibliography item does not belong to my collection of genetic papers. (ref) = citation source code. ACM = ACM Guide to Computing Literature, EEA = Electrical & Electronics Abstracts, BA = Biological Abstracts, CCA = Computers & Control Abstracts, CTI = Current Technology Index, EI = The Engineering Index (A = Annual, M = Monthly), DAI = Dissertation Abstracts International, P = Index to Scientific & Technical Proceedings, PA = Physics Abstracts, PubMed = National Library of Medicine, BackBib = Thomas BЁack's unpublished bibliography, Fogel/Bib = David Fogel's EA bibliography, etc * = only abstract seen. ? = data of this field is missing (BiBTeX-format). The last field in each reference item in Teletype font is the BiBTEXkey of the corresponding reference.
Appendix A Bibliography entry formats This documentation was prepared with LATEX and reproduced from camera-ready copy supplied by the editor. The ones who are familiar with BibTeX may have noticed that the references are printed using abbrv bibliography style and have no difficulties in interpreting the entries. For those not so familiar with BibTeX are given the following formats of the most common entry types. The optional fields are enclosed by "[ ]" in the format description. Unknown fields are shown by "?". after the entry means that neither the article nor the abstract of the article was available for reviewing and so the reference entry and/or its indexing may be more or less incomplete. Book: Author(s), Title, Publisher, Publisher's address, year. Example John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, 1975. Journal article: Author(s), Title, Journal, volume(number): first page ­ last page, [month,] year. Example David E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learning. Part I: Genetic algorithms in pipeline optimization. Engineering with Computers, 3(?):35­45, 1987. . Note: the number of the journal unknown, the article has not been seen. Proceedings article: Author(s), Title, editor(s) of the proceedings, Title of Proceedings, [volume,] pages, location of the conference, date of the conference, publisher of the proceedings, publisher's address. Example John R. Koza. Hierarchical genetic algorithms operating on populations of computer programs. In N. S. Sridharan, editor, Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages 768­774, Detroit, MI, 20.-25. August 1989. Morgan Kaufmann, Palo Alto, CA. . Technical report: Author(s), Title, type and number, institute, year. Example Thomas BaЁck, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992. 111
112
Vaasa GA Bibliography
Vaasa GA Bibliography
113
Vaasa Genetic Algorithm Bibliography
Search & Optimise Main features: · Over 20,000 references to published papers · by over 20,000 researchers. · Available as over 70 special bibliographies online: http://lipas.uwasa.fi/~TAU/reports/report94-1/ga*bib.pdf files. · Covers all sciences and engineering fields, from basic theory to applications. · Several indexes and statistical summaries. · See what problems evolution can solve for you! Global optimisation and search heuristics called genetic algorithm mimics evolution in nature using recombination and selection from a set of solution trials called population. One of the most prominent attractive features of genetic algorithms from the practical point of view of software techniques is their simplicity, which makes them easy to implement and tailor to solve practical search and optimisation problems. In spite of the seemingly simple processing, the genetic algorithms are good at solving some problems that are known to be hard. The simplicity, generality, flexibility, parallelism, and the good problem solving capability have made genetic algorithm very popular among various disciplines desperately searching methods to solve difficult optimisation problems.
---------- Observe that our server has also a selection of our papers on genetic algorithms and other compuational topics. See our bibliographies or file ftp.uwasa.fi/cs/README for further details.
114
Vaasa GA Bibliography
file ga90bib.ps.Z ... ga02bib.ps.Z gaACOUSTICSbib.pdf gaAIbib.pdf gaAERObib.pdf gaAGRObib.pdf gaALIFEbib.pdf gaARTbib.pdf gaAUSbib.pdf gaBASICSbib.pdf gaBIObib.pdf gaCADbib.pdf gaCHEMbib.pdf gaCHEMPHYSbib.ps.Z gaCIVILbib.pdf gaCODEbib.pdf gaCOEVObib.pdf gaCONTROLbib.pdf gaCSbib.pdf gaEARLYbib.pdf gaEAST-EURObib.ps.Z gaECObib.pdf gaECOLbib.pdf gaELMAbib.pdf gaESbib.pdf gaFAR-EASTbib.ps.Z gaFEMbib.pdf gaFINbib.pdf gaFPGAbib.pdf gaFRAbib.ps.Z gaFTPbib.ps.Z gaFUZZYbib.pdf gaGAMEbib.pdf gaGEObib.pdf gaGERbib.ps.Z gaGPbib.pdf gaIMPLEbib.pdf gaINDIAbib.ps.Z gaINVERSEbib.pdf gaIREGbib.pdf gaISbib.pdf gaJAPANbib.ps.Z gaLCSbib.pdf gaLASERbib.pdf gaLATINbib.ps.Z gaLOGISTICSbib.pdf gaMANAbib.pdf gaMANUbib.pdf gaMATHbib.pdf gaMEDICINEbib.pdf gaMEDITERbib.ps.Z gaMICRObib.pdf gaMILbib.pdf gaMLbib.pdf gaMSEbib.pdf gaNANObib.pdf gaNIRbib.pdf gaNNbib.pdf gaNORDICbib.pdf gaOPTICSbib.pdf gaOPTIMIbib.pdf gaORbib.pdf
# refs updated
... 557 235 2566 929 405 184 174 720 1224 1635 1407 1255 2277 1121 392 269 1943 1660 723 679 1569 177 574 464 1556 92 891 462 540 1353 1562 140 609 1586 1006 1500 276 316 221 87 2475 211 58 1099 741
... 2015/03/27 2013/06/14 2015/03/27 2012/08/01 2014/05/06 2014/05/06 2013/05/14 2015/03/28 2014/05/06 2012/07/30 2015/03/28 2014/05/06 2014/05/06 2015/04/26 2015/01/12 2015/03/28 2015/03/29 2003/07/09 2012/07/16 2012/07/16 2012/07/20 2008/08/13 2011/12/29 2015/03/28 2013/05/22 2015/07/09 2011/12/29 2003/07/09 2015/03/20 2014/05/06 2015/08/21 2004/09/22 2012/07/30 2012/07/30 2003/05/23 2015/03/28 2015/04/26 2009/08/17 2013/05/14 2012/08/08 2009/07/31 2015/03/27 2014/05/06
1043 1162 1810 83 113 1231 575 117 267 1979 1148 2168 923 1750
2016/01/04 2014/07/18 2003/07/09 2008/03/31 2009/08/17 2012/08/08 2013/08/15 2012/07/17 2013/11/18 2015/03/20 2015/02/15 2014/04/28 2003/07/09 2014/12/10
contents GA in 1990 ... GA in 2002 GA in acoustics GA in artificial intelligence GA in aerospace GA in agriculture GA in artificial life GA in art and music GA in Australia and New Zealand Basics of GA GA in biosciences including medicine GA in Computer Aided Design GA in chemical sciences ; previously in gaCHEMPHYSbib.ps.Z GA in chemistry and physics; divided into gaCHEMbib.ps.Z and gaPHYSbib.ps.Z 2002 GA in civil, structural, and mechanical engineering GA coding co- and differential evolution GA GA in control and process engineering GA in comp. sci. (incl. databases, /mining, software testing and GP) GA in early years (upto 1989) GA in the Eastern Europe GA in economics and finance GA in ecology and biodiversity GA in electromagnetics Evolution strategies GA in the Far East (excl. Japan) GA & FEM GA in Finland GA & FPGA GA in France GA papers available via web (ftp and www) GA and fuzzy logic GA and games GA in geosciences GA in Germany, Austria, and Switzerland genetic programming implementations of GA GA in India GA in inverse problems image registration immune systems GA in Japan Learning Classifier Systems GA and lasers GA in Latin America, Portugal & Spain GA in logistics (incl. TSP) GA in management GA in manufacturing GA in mathematics GA in medicine GA in the Mediterranean GA in microscopy & microsystems GA in military applications GA in machine learning GA in materials GA in nanotechnology GA in NIRS (spectroscopy) GA in neural networks GA in Nordic countries GA in optics and image processing GA and optimization (only a few refs) GA in operations research
...table continues on the next page...
Vaasa GA Bibliography
115
file gaPARAbib.pdf gaPARETObib.pdf gaPATENTbib.pdf gaPATTERNbib.pdf gaPHYSbib.pdf gaPIEZObib.pdf gaPOWERbib.pdf gaPROTEINbib.pdf gaPSObib.pdf gaQCbib.pdf gaREMOTEbib.pdf gaROBOTbib.pdf gaSAbib.pdf gaSCHEDULINGbib.pdf gaSELECTIONbib.ps.Z gaSIGNALbib.pdf gaSIMULAbib.pdf gaTELEbib.pdf gaTHEORYbib.pdf gaTHESESbib.pdf gaVAASAbib.pdf gaVLSIbib.pdf gaUKbib.ps.Z gaXbib.ps.Z
# refs 833 562 475 1654 2899 57 1017 599 92 553 302 819 346 868 390 2587 1122 840 2654 578 284 799 1998 129
updated 2012/07/30 2015/03/29 2015/03/27 2012/09/21 2015/03/29 2012/07/18 2015/02/15 2015/03/29 2013/08/15 2015/03/29 2012/07/20 2015/03/29 2015/03/29 2014/05/14 2015/03/29 2012/07/27 2015/03/29 2009/07/27 2012/09/17 2009/01/07 2010/08/17 2012/07/16 2008/05/22 2013/08/15
contents Parallel and distributed GA Pareto optimization GA patents GA in pattern recognition incl. LCS GA in physical sciences ; previously in gaCHEMPHYSbib.ps.Z GA & piezo GA in power engineering GA in protein research Particle Swarm Optimisation quantum computing GA in remote sensing GA in robotics GA and simulated annealing GA in scheduling Selection in GAs GA in signal and image processing GA in simulation GA in telecom Theory and analysis of GA PhD etc theses GA in Vaasa GA in electronics, VLSI design and testing GA in United Kingdom GA & X-rays
Table A.1: Indexed genetic algorithm special bibliographies available online in directory http://lipas.uwasa.fi/~TAU/reports/report94-1. New updates only as .pdf files.

JT Alander

File: indexed-bibliography-of-genetic-algorithms-in-mathematics-and.pdf
Author: JT Alander
Published: Mon Jan 4 22:08:04 2016
Pages: 119
File size: 1.11 Mb


, pages, 0 Mb

Profile: Lilian Moore, 5 pages, 0.11 Mb
Copyright © 2018 doc.uments.com